
Module 1:
An Introduction

Python Boot Camp

Module 1: An Introduction page 2© Dr Jonathan Cazalas

Objectives

 To understand computer basics, programs, and operating

systems (§§1.2-1.4).

 To write and run a simple Python program (§1.5).

 To explain the basic syntax of a Python program (§1.5).

 To describe the history of Python (§1.6).

 To explain the importance of, and provide examples of,

proper programming style and documentation (§1.7).

 To explain the differences between syntax errors,

runtime errors, and logic errors (§1.8).

 To create a basic graphics program using Turtle (§1.9).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 3© Dr Jonathan Cazalas

Programs

Computer programs, known as software, are instructions to

the computer.

You tell a computer what to do through programs. Without

programs, a computer is an empty machine. Computers do

not understand human languages, so you need to use

computer languages to communicate with them.

Programs are written using programming languages.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 4© Dr Jonathan Cazalas

Programming Languages
Machine Language Assembly Language High-Level Language

Machine language is a set of primitive instructions
built into every computer. The instructions are in
the form of binary code, so you have to enter binary
codes for various instructions. Program with native
machine language is a tedious process. Moreover
the programs are highly difficult to read and
modify. For example, to add two numbers, you
might write an instruction in binary like this:

1101101010011010

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 5© Dr Jonathan Cazalas

Programming Languages
Machine Language Assembly Language High-Level Language

Assembly languages were developed to make programming
easy. Since the computer cannot understand assembly
language, however, a program called assembler is used to
convert assembly language programs into machine code.
For example, to add two numbers, you might write an
instruction in assembly code like this:

ADDF3 R1, R2, R3

 …
 ADDF3 R1, R2, R3

 …

Assembly Source File

Assembler

 …
 1101101010011010

 …

Machine Code File

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 6© Dr Jonathan Cazalas

Programming Languages
Machine Language Assembly Language High-Level Language

The high-level languages are English-like and easy to learn

and program. For example, the following is a high-level

language statement that computes the area of a circle with

radius 5:

area = 5 * 5 * 3.1415;

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 7© Dr Jonathan Cazalas

Popular High-Level Languages

COBOL (COmmon Business Oriented Language)

FORTRAN (FORmula TRANslation)

BASIC (Beginner All-purpose Symbolic Instructional Code)

Pascal (named for Blaise Pascal)

Ada (named for Ada Lovelace)

C (whose developer designed B first)

Visual Basic (Basic-like visual language developed by Microsoft)

Delphi (Pascal-like visual language developed by Borland)

C++ (an object-oriented language, based on C)

C# (a Python-like language developed by Microsoft)

Python (We use it in the book)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 8© Dr Jonathan Cazalas

Compiling Source Code

A program written in a high-level language is called a

source program. Since a computer cannot understand a

source program. Program called a compiler is used to

translate the source program into a machine language

program called an object program. The object program is

often then linked with other supporting library code before

the object can be executed on the machine.

Compiler Source File Machine-language
File

Linker Executable File

Library Code

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 9© Dr Jonathan Cazalas

What is Python?
General Purpose Interpreted Object-Oriented

Python is a general purpose programming language.
That means you can use Python to write code for
any programming tasks. Python are now used in
Google search engine, in mission critical projects in
NASA, in processing financial transactions at New
York Stock Exchange.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 10© Dr Jonathan Cazalas

What is Python?
General Purpose Interpreted Object-Oriented

Python is interpreted, which means that python
code is translated and executed by an interpreter
one statement at a time.

In a compiled language (not Python), the entire
source code is compiled and then executed
altogether.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 11© Dr Jonathan Cazalas

What is Python?
General Purpose Interpreted Object-Oriented

Python is an object-oriented programming
language. Data in Python are objects created from
classes. A class is essentially a type that defines the
objects of the same kind with properties and
methods for manipulating objects. Object-oriented
programming is a powerful tool for developing
reusable software.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 12© Dr Jonathan Cazalas

Python’s History

 created by Guido van Rossum in Netherlands in

1990

Open source

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 13© Dr Jonathan Cazalas

Python 2 vs. Python 3

Python 3 is a newer version, but it is not

backward compatible with Python 2. That

means if you write a program using Python

2, it may not work on Python 3.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 14© Dr Jonathan Cazalas

Installing Python

Installing Python is (usually) a two-step

process:

– Install Python itself

What this does is give your computer the ability to

understand the Python code you will type.

It will also allow your computer to “compile”, or

interpret, the Python code you will type

– Install some type of Integrated Development

Enviroment (IDE)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 15© Dr Jonathan Cazalas

Installing Python

So what is an IDE?

– Let me ask you a question: What is Microsoft Word?

 “Well, it’s a program to type…stuff…reports, resumes, etc.”

– What is Excel?

 It’s a spreadsheet program

– Well, just like you have a program to type reports

(Word) or a program for spreadsheets (Excel), you also

have a specific program for coding!

– And this program is known as an IDE

– And there are MANY different IDEs for each language

 Just like many different spreadsheet programs

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 16© Dr Jonathan Cazalas

Installing Python

So while we could install Python and our

IDE of choice in a two-step process…

We’ll make it even easier for you:

– Thonny: www.thonny.org

– This is a great, beginner IDE

– And it already has the Python language built in!

– Meaning, you needn’t perform the first step of

downloading and installing Python

– So all you do is download and install Thonny

http://www.thonny.org/

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 17© Dr Jonathan Cazalas

Installing Python

Go ahead and install Thonny

– Website: www.thonny.org

– At the top right, you will find links for the

Windows, Mac, and Linux versions

– Click whichever is needed for your computer

– Once downloaded, click the file to install

– Keep ALL defaults and just click next

throughout the install and then Finish once

complete

http://www.thonny.org/

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 18© Dr Jonathan Cazalas

Your First Program

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 19© Dr Jonathan Cazalas

And Another One…

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 20© Dr Jonathan Cazalas

Anatomy of a Python Program

Statements

Comments

Indentation

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 21© Dr Jonathan Cazalas

Display two messages

print("Welcome to Python")

print("Python is fun")

Statement
A statement represents an action or a sequence of actions.

The statement print("Welcome to Python") in the

program in Listing 1.1 is a statement to display the

greeting "Welcome to Python“.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 22© Dr Jonathan Cazalas

Display two messages

print("Welcome to Python")

print("Python is fun")

Indentation
The indentation matters in Python. Note that the
statements are entered from the first column in the
new line. It would cause an error if the program is
typed as follows:

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 23© Dr Jonathan Cazalas

Special Symbols

Character Name Description

()

" "

''' '''

Opening and closing

parentheses

Pound sign

Opening and closing

quotation marks

Opening and closing

quotation marks

Used with functions.

Precedes a comment line.

Enclosing a string (i.e., sequence of characters).

Enclosing a paragraph comment.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 24© Dr Jonathan Cazalas

Programming Style and

Documentation

Appropriate Comments

Proper Indentation and Spacing

Lines

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 25© Dr Jonathan Cazalas

Appropriate Comments

Include a summary at the beginning of the
program to explain what the program does, its key
features, its supporting data structures, and any
unique techniques it uses.

Include your name, class section, instructor, date,
and a brief description at the beginning of the
program.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 26© Dr Jonathan Cazalas

Proper Indentation and Spacing

 Indentation

– Indent four spaces.

– A consistent spacing style makes programs clear

and easy to read, debug, and maintain.

Spacing

– Use blank line to separate segments of the code.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Chapter 1: An Introduction page 27© Dr Jonathan Cazalas

Programming Errors

Syntax Errors

– Error in code construction

Runtime Errors

– Causes the program to abort

Logic Errors

– Produces incorrect result

Chapter 1: An Introduction page 28© Dr Jonathan Cazalas

What is Computer Science?

Computer Science can be summarized with

two simple words: problem solving.

Computer Science is the study of problems,

problem-solving, and the solutions that come

out of this problem-solving process.

Given a problem, the goal is to develop an

algorithm to solve the problem.

An algorithm is a step-by-step list of

instructions to solve the problem.

Chapter 1: An Introduction page 29© Dr Jonathan Cazalas

Algorithm

Algorithm: a step-by-step series of

instructions to complete a task

Similar to a recipe!

a step-by-step series of instructions to

prepare a specific food

Such as spaghetti!

So you can think of a recipe as a type of

algorithm that is specific for making food.

Chapter 1: An Introduction page 30© Dr Jonathan Cazalas

What is Programming?

Once you have developed the algorithm on

paper, you must now “prove it” and show

that it works.

Programming is the process of encoding your

algorithm into a programming language, so

that it can then be executed by a computer.

But what is the first step?

You need a solution.

This means you need an algorithm!

Chapter 1: An Introduction page 31© Dr Jonathan Cazalas

So who is good at Programming?

Are you good at problem solving?

Are you good at strategy?

These are the core fundamentals of

programming.

Program Design &

Problem-Solving

Techniques

Chapter 1: An Introduction page 33© Dr Jonathan Cazalas

How Do We Write a Program?
 A Computer is not intelligent.

 It cannot analyze a problem and come up with a solution.

 A human (the programmer) must analyze the problem, develop

the instructions for solving the problem, and then have the

computer carry out the instructions.

 To write a program for a computer to follow, we must go through a

two-phase process: problem solving and implementation.

Chapter 1: An Introduction page 34© Dr Jonathan Cazalas

Problem-Solving Phase (PSP)

 Analysis and Specification- Understand (define) the
problem and what the solution must do.

 General Solution (Algorithm)- Specify the required
data types and the logical sequences of steps that
solve the problem.

 Verify- Follow the steps exactly to see if the solution
really does solve the problem.

Chapter 1: An Introduction page 35© Dr Jonathan Cazalas

 Concrete Solution (Program)- Translate the
algorithm (the general solution) into a programming
language.

 Test- Have the computer follow the instructions.
 Then manually check the results.
 If you find errors, analyze the program and the algorithm to determine the source of the

errors, and then make corrections.

 Once a program is tested, it enters into next phase
(maintenance).

 Maintenance requires Modification of the program to
meet changing requirements or to correct any errors
that show up while using it.

Implementation Phase

Chapter 1: An Introduction page 36© Dr Jonathan Cazalas

Weekly Practice Problems

 Repl.it

 You will have weekly practice problems assigned every
Monday

 These problems will be “due” the by 11:59 p.m. the
following Sunday night

 Due?
 There is no grade for this Python Bootcamp

 What you get out of the course directly relates to how dedicated
you are and how much you practice

 A link to enroll in the repl.it course will be posted in Slack

Chapter 1: An Introduction page 37© Dr Jonathan Cazalas

GUI

 So what is a GUI?

 It stands for Graphical User Interface

 We’ll see much about this later in the semester

 But for now, we introduce Python’s turtle!

 Mainly used to facilitate learning

 Some examples…

Chapter 1: An Introduction page 38© Dr Jonathan Cazalas

GUI

 Turtle Example 1:

Chapter 1: An Introduction page 39© Dr Jonathan Cazalas

GUI

 Turtle Example 2:

Chapter 1: An Introduction page 40© Dr Jonathan Cazalas

GUI

 Turtle Example 3:

Chapter 1: An Introduction page 41© Dr Jonathan Cazalas

GUI

 Turtle Program --> Your Turn!

 Make a NEW program and code it such that the following
shape is printed on your screen

Chapter 1: An Introduction page 42© Dr Jonathan Cazalas

GUI

 Turtle Program --> Your Turn!

 Make a NEW program and code it such that the following
shape is printed on your screen

 Hint:
 You may need to google how large the angles of a star are

Module 1:
An Introduction

Python Boot Camp

