
Module 2:
Elementary Programming

Python Boot Camp

Module 2: Elementary Programming page 2© Dr Jonathan Cazalas

 In the preceding chapter, you learned how to
create, compile, and run a Python program.

 Starting from this chapter, you will learn how to
solve practical problems programmatically.

 Through these problems, you will learn Python
primitive data types and related subjects, such as
variables, constants, data types, operators,
expressions, and input and output.

Motivations

Module 2: Elementary Programming page 3© Dr Jonathan Cazalas

Objectives

 To write programs that perform simple computations (§2.2).
 To obtain input from a program’s user by using the input function (§2.3).
 To use identifiers to name variables (§2.4).
 To assign data to variables (§2.5).
 To define named constants (§2.6).
 To use the operators +, -, *, /, //, %, and ** (§2.7).
 To write and evaluate numeric expressions (§2.8).
 To use augmented assignment operators to simplify coding (§2.9).
 To perform numeric type conversion and rounding with the int and round

functions (§2.10).
 To obtain the current system time by using time.time() (§2.11).
 To describe the software development process and apply it to develop

the loan payment program (§2.12).
 To compute and display the distance between two points (§2.13).

Module 2: Elementary Programming page 4© Dr Jonathan Cazalas

Writing a Simple Program

 Write a program that will calculate the area of a
circle.

 Think of every problem as having two main parts, or
phases*:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

*On these smaller problems, the problem-solving phase may seem
silly (unnecessary), but it is fully necessary on more complex
problems.

Module 2: Elementary Programming page 5© Dr Jonathan Cazalas

Writing a Simple Program

 Write a program that will calculate the area of a
circle.

 Step 1: Design your algorithm

1. Get the radius of the circle.

2. Compute the area using the following formula:
 area = radius x radius x π

3. Display the result

Module 2: Elementary Programming page 6© Dr Jonathan Cazalas

Writing a Simple Program

 Write a program that will calculate the area of a
circle.

 Step 2: Implementation (code the algorithm)

 Notice that we start by writing comments for each part

Step 1: get radius

Step 2: calculate area

Step 3: display the result

Module 2: Elementary Programming page 7© Dr Jonathan Cazalas

Writing a Simple Program

 Write a program that will calculate the area of a
circle.

 Step 2: Implementation (code the algorithm)

 In order to store the radius, the program must declare a
symbol called a variable.

 A variable represents a value stored in the computer’s
memory

 You should choose good names for variables
 Do not choose “x” or “y”…these have no meaning

 Choose names with meaning…“area” or “radius”

Module 2: Elementary Programming page 8© Dr Jonathan Cazalas

Writing a Simple Program

 Write a program that will calculate the area of a
circle.

 Step 2: Implementation (code the algorithm)

 What value do you want to store in radius?

 What about area?
 Integer? Real number? Something else maybe?

 The variable’s data type is the kind of data that you can
store in that particular variable.

 Python automatically figures out the data type according
to the value assigned to the variable

Module 2: Elementary Programming page 9© Dr Jonathan Cazalas

Writing a Simple Program

 Write a program that will calculate the area of a
circle.

 Step 2: Implementation (code the algorithm)

Step 1: get radius

radius = 20 # radius is now 20

Step 2: calculate area

area = radius * radius * 3.14159

Step 3: display the result

print("The area for the circle of radius", radius, "is", area)

Module 2: Elementary Programming page 10© Dr Jonathan Cazalas

Trace a Program Execution
Assign a radius

radius = 20 # radius is now 20

Compute area

area = radius * radius * 3.14159

Display results

print("The area for the circle of radius " +

str(radius) + " is " + str(area))

20radius

Assign 20 to

radius

Module 2: Elementary Programming page 11© Dr Jonathan Cazalas

Trace a Program Execution
Assign a radius

radius = 20 # radius is now 20

Compute area

area = radius * radius * 3.14159

Display results

print("The area for the circle of radius“,

radius, " is "area)

20radius

Assign result to

area

1256.636area

Module 2: Elementary Programming page 12© Dr Jonathan Cazalas

Trace a Program Execution
Assign a radius

radius = 20 # radius is now 20

Compute area

area = radius * radius * 3.14159

Display results

print("The area for the circle of radius",

radius, "is", area)

20radius

print a message

to the console

1256.636area

Module 2: Elementary Programming page 13© Dr Jonathan Cazalas

Writing a Simple Program

 Discussion:
 Variables such as radius and area refer to memory

locations

 Each variable has a name that refers to a value

 And you can assign a value as shown below
radius = 20

 Here, we assign the value, 20, into the variable, radius

Module 2: Elementary Programming page 14© Dr Jonathan Cazalas

Writing a Simple Program

 Discussion:

 The following table shows the value in memory for the
variables area and radius as the program is executed.

 This method of reviewing a program is called “tracing a
program”.

 Helps you to understand how programs work.

Module 2: Elementary Programming page 15© Dr Jonathan Cazalas

 Translate the following algorithm into Python code:

 Step 1: Use a variable named miles with initial value 100.

 Step 2: Multiply miles by 1.609 and assign it to a variable
named kilometers.

 Step 3: Display the value of kilometers.

 What is kilometers after Step 3?

Check Point

Module 2: Elementary Programming page 16© Dr Jonathan Cazalas

Reading Input from the Console

 In the last example, the radius was fixed.

 Your program can be better, and more interactive,
by letting the user enter the radius.

 Python uses the input function for this purpose
variable = input("Enter a value: ")

 By default, Python understands any input to be a string
value

 Example: the user enters the number 81
 Even though we know/view this as a number

 Python will see it as a string of two characters
 An ‘8’ followed by a ‘1’…Python does not see it as the number 81, by default

Module 2: Elementary Programming page 17© Dr Jonathan Cazalas

Reading Input from the Console

 Function eval:

 You can use the eval function to have Python evaluate (or
in this case, convert) what is inside the string

 Examples:
 eval("34.5") returns 34.5

 eval("345") returns 345

 eval("3 + 4") returns 7

 eval("51 + (54 * (3 + 2))") returns 321

 Now we can revisit our previous solution and ask the user
to enter a radius…

Module 2: Elementary Programming page 18© Dr Jonathan Cazalas

Program 2: Compute Area
with Console Input

 Write a program that will calculate the area of a
circle…but this time using user input for radius.

 Remember

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

 We’ve already done the problem-solving phase

 Copy your last code and paste it into a new Thonny program

 Edit accordingly

Module 2: Elementary Programming page 19© Dr Jonathan Cazalas

Program 2: Compute Area
with Console Input

Module 2: Elementary Programming page 20© Dr Jonathan Cazalas

Program 3: Compute Average

 Write a program to get three values from the user
and compute their average.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 2: Elementary Programming page 21© Dr Jonathan Cazalas

Program 3: Compute Average

 Write a program to get three values from the user
and compute their average.

 Step 1: Design your algorithm

1. Get three numbers from the user.
 Use input and eval functions

 You can ask for each number on a different line

 “Please enter the first number: ”

 “Please enter the second number: ”, and so on

2. Compute the average of the three numbers:
 average = (num1 + num2 + num3) / 3

3. Display the result

Module 2: Elementary Programming page 22© Dr Jonathan Cazalas

Program 3: Compute Average

 Write a program to get three values from the user
and compute their average.

 Step 2: Implementation (code the algorithm)

Step 1: ask user to enter three values

Step 2: calculate average

Step 3: display the results

Module 2: Elementary Programming page 23© Dr Jonathan Cazalas

Program 3: Compute Average

Module 2: Elementary Programming page 24© Dr Jonathan Cazalas

Program 3: Compute Average

 Discussion:

 If the user enters something other than a number, your
program would give an error
 We’ll discuss how do to deal with this later

 Statements are usually only one line
 But in the last example, the print statement was over two lines

 Why was this okay?

 Because Python scans the print statement and knows it is not
complete until it finds the closing parenthesis

 So we say these two lines are joined implicitly

Module 2: Elementary Programming page 25© Dr Jonathan Cazalas

Program 3: Compute Average

 Discussion:
 Using the line continuation symbol (\)

 In same cases, Python cannot determine the end of a statement if
it is written across multiple lines

 Example:
sum = 1 + 2 + 3 + 4 +

5 + 6

 That would cause an error

 If some reason, you absolutely needed to write a single statement
across multiple lines, you can use the backslash as follows
sum = 1 + 2 + 3 + 4 + \

5 + 6

Module 2: Elementary Programming page 26© Dr Jonathan Cazalas

 What is an identifier?

 Identifiers are the names that identify elements of your
program, such as variables and functions

 More specifically:
 An identifier is a sequence of characters that consists of letters,

digits, underscores (_), and asterisk (*).

 An identifier must start with a letter or an underscore. It cannot
start with a digit.

 An identifier cannot be a reserved word. (See Appendix A,
"Python Keywords," for a list of reserved words.) Reserved words
have special meanings in Python, which we will later.

 An identifier can be of any length.

Identifiers

Module 2: Elementary Programming page 27© Dr Jonathan Cazalas

 Examples of legal identifiers:

 area, radius, number1

 Example of illegal identifiers:

 2A, d+4

 Python is case sensitive

 area, Area, and AREA are all different identifiers

Identifiers

Module 2: Elementary Programming page 28© Dr Jonathan Cazalas

 Variables are used to represent values that may be
changed in the program.

 In the previous programs, we used variables to store
values
 area, radius, average, etc.

 They are called variables because their values can
be changed!

Variables

Module 2: Elementary Programming page 29© Dr Jonathan Cazalas

 Discussion:

 radius is initially 1.0 (line 2)

 then changed to 2.0 (line 7)

 area is computer as 3.14159 (line 3)

 then changed to 12.56636 (line 8)

Variables

Module 2: Elementary Programming page 30© Dr Jonathan Cazalas

Assignment Statements

 When we create a variable in Python, we initialize it
with some starting value

 And we do this with the = sign

 which is also known as the assignment operator

 Assignment Operator (=):

 The syntax is as follows:

variable = expression

 An expression represents a computation involving values,
variables, and operators that, taken together, evaluate to a value

 The assignment operator takes whatever is on the right side and
saves it (or, “assigns it”) to the variable on the left

Module 2: Elementary Programming page 31© Dr Jonathan Cazalas

Assignment Statements

 Examples:

 Variables can be used in an expression

 And the same variable can be used on both sides of the
expression
 Example:

x = x + 1

 Here, the result of ‘x + 1’ is assigned into (saved into) the variable x

 So if x has the value of 1 before this statement, what would it be after?

 x would equal 2 after the statement

Module 2: Elementary Programming page 32© Dr Jonathan Cazalas

 Continue here

Module 2: Elementary Programming page 33© Dr Jonathan Cazalas

Assignment Statements

 Note:

 Consider the following:
x = 2 * x + 1

 In mathematics, this would be an equation

 In Python, this is an assignment statement

 The “2 * x + 1” is evaluated and then saved into x

 How? It’s evaluated using whatever value x had previously

 You can also assign a value to multiple variables at once:
i = j = k = 1

 This is the same as:
i = 1

j = 1

k = 1

Module 2: Elementary Programming page 34© Dr Jonathan Cazalas

Assignment Statements

 Note:

 Variables must be created before they are used!

 This can be fixed as follows:

Module 2: Elementary Programming page 35© Dr Jonathan Cazalas

Swapping Two Values

 Consider that you have two variables:
 x and y

 These two variables both have integer values inside
them

 You’d like to write a few lines of code to SWAP what
is inside those variables
 So x should end up having the value that was inside y

 And y should end up having the value that was inside x

 Try to do this yourselves…

Module 2: Elementary Programming page 36© Dr Jonathan Cazalas

Simultaneous Assignment

 A cool feature of Python!

 But first, what is simultaneous assignment?

 Syntax:
var1, var2, ..., varn = exp1, exp2, ..., expn

 This tells Python to evaluate all the expressions on the right

 Then tells Python to save them into the corresponding variables
on the left

 Really, not that useful at first glance

 But consider a VERY famous example…
 (the one you all just did yourselves…SWAP)

Module 2: Elementary Programming page 37© Dr Jonathan Cazalas

Simultaneous Assignment

 Famous example: Swapping Values!

 a very common operation in programming

 Consider two variables, x and y
 Assume x = 1 and y = 2

 How can we swap their values?

 Answer: we need a temporary variable
 We’ll call it temp cause we’re super-duper original

 Here’s the code:

Module 2: Elementary Programming page 38© Dr Jonathan Cazalas

Simultaneous Assignment

 Famous example: Swapping Values!

 But check out how easy this is to do using simultaneous
assignment in Python:

 That’s it!
 I know, I know…since most of you haven’t coded before…this may

not seem like a big deal

 But trust me, it is!

 Now let’s redo the average example reading in all
three values in one go…

Module 2: Elementary Programming page 39© Dr Jonathan Cazalas

Program 3: Compute Average
with Simultaneous Assignment

Module 2: Elementary Programming page 40© Dr Jonathan Cazalas

 A named constant is an identifier that represents a
permanent value.

 The value of a variable can change during execution of a
program.

 However, a named constant, or simply constant,
represents a permanent data that never changes.

 PI in the example above was, in fact, a constant
 PI never changes

 In Python, there is no special syntax for constants
 You just use regular variables

 But we denote it as a constant by using ALL UPPERCASE

Named Constants

Module 2: Elementary Programming page 41© Dr Jonathan Cazalas

 Revisiting Problem 1:

Named Constants

Module 2: Elementary Programming page 42© Dr Jonathan Cazalas

 Benefits of named constants:

1. You don’t have to repeatedly type the same value if it is
used multiple times.

2. If you have to change the constant’s value (e.g., from
3.14 to 3.14159 for PI), you need to change it only in a
single location in the source code.

3. Descriptive names make the program easy to read.
 In this case, UPPERCASE signals the reader that the “variable”

in fact should be understood as a constant

Named Constants

Module 2: Elementary Programming page 43© Dr Jonathan Cazalas

 What is a data type?

 Information stored in a computer generally called data

 There are two types of numeric data:
1. Integers

2. Real numbers

 Integers (int for short) are represented using whole
numbers

 Real numbers are represented with a fractional part
 Insider the computer real numbers are represented as floating-

point values (aka floats)

Numeric Data Types and
Operators

Module 2: Elementary Programming page 44© Dr Jonathan Cazalas

 Distinguishing between ints and floats?

 If a number has a decimal point, it is a float. Simple.

 Even if there is only a zero after the decimal, it is still a
float.
 So 1.0 is considered a float, but 1 is an integer

 And this is important because these two numbers are
stored different internally

 The following slide shows the Python operators for
numeric data types

Numeric Data Types and
Operators

Module 2: Elementary Programming page 45© Dr Jonathan Cazalas

Numeric Data Types and
Operators

Module 2: Elementary Programming page 46© Dr Jonathan Cazalas

 The /, //, and ** operators:

 The / performs “standard” division, aka floating-point
division:

 The // performs integer division:

Numeric Data Types and
Operators

Module 2: Elementary Programming page 47© Dr Jonathan Cazalas

 Exponents in Python
 Given two numbers, a and b, Python can compute ab

 This is a raised to the b power

 How?
 You use the exponent operator: **

 This is two asterics next to each other

 So, a ** b

 Examples:

Numeric Data Types and
Operators

Module 2: Elementary Programming page 48© Dr Jonathan Cazalas

 The % Operator

 This is famously known as the mod operator

 It calculates the remainder after classical/integer division

 Examples:
 7 % 3 = 1

 3 % 7 = 3

 12 % 4 = 0

Numeric Data Types and
Operators

 26 % 8 = 2

 20 % 13 = 7

 19 % 5 = 4

Module 2: Elementary Programming page 49© Dr Jonathan Cazalas

 The % Operator in practice

 mod is VERY useful in programming!

 Example:
 We can use it to test if an integer is even or odd

 Let’s pause and try to figure out, in groups, how we can use mod
to determine if a number is even or odd…

 An even number % 2 is always 0
 Right?

 Cuz an even number divided by 2 always has a remainder of 0!

 And an odd number % 2 is always 1
 Cuz an odd number divided by 2 always has a remainder of 1!

Numeric Data Types and
Operators

Module 2: Elementary Programming page 50© Dr Jonathan Cazalas

 The % Operator in practice

 mod is VERY useful in programming!

 Another example:
 Given 195 seconds, how many minutes and how many seconds

 Some quick math done in the head…3 minutes is 180 seconds

 So we have a full 3 minutes and then 15 seconds left

 We can calculate this using two operators:
 Integer division: //

 And mod: %

 195 // 60 = 3
 This gives us the quantity of full minutes found within 195 seconds

 195 % 3 = 15
 This gives us the remainder after dividing 195 by 3

Numeric Data Types and
Operators

Module 2: Elementary Programming page 51© Dr Jonathan Cazalas

Program 4: Display Time

 Write a program to prompt the user for a number of
seconds, and then display how many minutes and
seconds are obtained.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 2: Elementary Programming page 52© Dr Jonathan Cazalas

Program 4: Display Time

 Write a program to prompt the user for a number of
seconds, and then display how many minutes and
seconds are obtained.

 Step 1: Design your algorithm

1. Get total seconds from the user.
 Use input and eval functions

2. Compute the minutes and the remaining seconds
 Using // and % as shown on previous pages

3. Display the result

Module 2: Elementary Programming page 53© Dr Jonathan Cazalas

Program 4: Display Time

 Write a program to prompt the user for a number of
seconds, and then display how many minutes and
seconds are obtained.

 Step 2: Implementation (code the algorithm)

Module 2: Elementary Programming page 54© Dr Jonathan Cazalas

Check Point
 What are the results of the following expressions?

Numeric Data Types and
Operators

8.4

8

2

0

1

0

59

48

25

26.01

Module 2: Elementary Programming page 55© Dr Jonathan Cazalas

 How to evaluate Python expressions?

 Simple: the same way as arithmetic expressions!

 Given the following expression:

 We can directly translate it to Python as follows:

 In summary:
 You can safely apply classical arithmetic rules when evaluating a

Python expression!

Evaluating Expressions and
Operator Precedence

Module 2: Elementary Programming page 56© Dr Jonathan Cazalas

 Evaluating expressions is straightforward

 But reminders are still helpful!
 Operators contained within pairs of parentheses are evaluated

first.

 Parentheses can be nested, in which case the expression in the
inner parentheses is evaluated first.

 When more than one operator is used in an expression, the
following operator precedence rule is used to determine the
order of evaluation.

Evaluating Expressions and
Operator Precedence

Module 2: Elementary Programming page 57© Dr Jonathan Cazalas

 Evaluating expressions is straightforward

 But reminders are still helpful!
 Exponentiation (**) is applied first.

 Multiplication (*), float division (/), integer division (//) , and
remainder operators (%) are applied next.
 If an expression contains several multiplication, division, and remainder

operators, they are applied from left to right.

 Addition (+) and subtraction (-) operators are applied last.
 If an expression contains several addition and subtraction operators, they

are applied from left to right.

Evaluating Expressions and
Operator Precedence

Module 2: Elementary Programming page 58© Dr Jonathan Cazalas

 Evaluating expressions is straightforward

 An example:

Evaluating Expressions and
Operator Precedence

Module 2: Elementary Programming page 59© Dr Jonathan Cazalas

Check Point
 Write the following as a Python expression:

 Solution:
4.0 / (3.0 * (r + 34)) – 9 * (a + b * c) +

(3.0 + d * (2 + a)) / (a + b * d)

Evaluating Expressions and
Operator Precedence

Module 2: Elementary Programming page 60© Dr Jonathan Cazalas

 Idea:

 We like shortcuts!
 Most programming languages offer augmented assignment

operators

 What are they?
 Very often the current value of a variable is used, modified, and

then reassigned back to the same variable

 Example:
count = count + 1

 Python allows you to combine the addition and assignment into
one operator by using an augmented assignment operator
count += 1

 specifically, this one is called an addition assignment operator

Augmented Assignment
Operators

Module 2: Elementary Programming page 61© Dr Jonathan Cazalas

 A listing of augmented assignment operators:

 Note: there are no spaces between op. and assignment
 + = or * = would be wrong…it should be += or *=

Augmented Assignment
Operators

Module 2: Elementary Programming page 62© Dr Jonathan Cazalas

Check Point
 Assume a = 1 and that each of the following expressions

is independent. What are the results of the following?

Augmented Assignment
Operators

= 5

= -3

= 4

= 0.25

= 0

= 1

= 62

Module 2: Elementary Programming page 63© Dr Jonathan Cazalas

 What is meant by type conversions?

 We discussed data types
 int and float

 Well, we can convert one to another
 In fact, if, for example, we add an int and a float, Python will

automatically convert the int to a float
 So 3 * 4.5 is converted to 3.0 * 4.5

 And sometimes it is helpful to get just the integer part of
a real number…you can use the int function for this:

Type Conversions and Rounding

Note: the fractional part is
truncated, not rounded up or down.

Module 2: Elementary Programming page 64© Dr Jonathan Cazalas

 And now rounding…

 We all know what rounding is

 Python gives us the round function to round numbers:

 Note:
 The int and round functions do not change the variable itself:

Type Conversions and Rounding

Module 2: Elementary Programming page 65© Dr Jonathan Cazalas

 A note on int vs eval:

 The int function can be used to convert a string to an
integer:
 int(“34”) returns the integer value 34

 This means we can use int or eval

 Which is better?
 That’s debatable…but usually those in the “int” camp win

 Why?

 The int function is specific:
 You, the programmer, are instructing Python exactly what to give

 The eval function leaves it up to the discretion of Python

 At the same time, eval can also be used to evaluate
expressions, something that int cannot do

Type Conversions and Rounding

Module 2: Elementary Programming page 66© Dr Jonathan Cazalas

Program 5: Sales Tax

 Write a program to prompt the user for a sales
amount and then display the sales tax due with
exactly two digits after the decimal place.

 Assume tax is 6%
 Or you can ask the user to enter the sales tax percentage

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 2: Elementary Programming page 67© Dr Jonathan Cazalas

Program 5: Sales Tax

 Write a program to prompt the user for a sales
amount and then display the sales tax due with
exactly two digits after the decimal place.

 Step 1: Design your algorithm

1. Get sales amount from the user.
 Use input and eval functions

2. Compute the sales tax with exactly two decimal places
 The calculation is easy

 But how to get two decimal places…

3. Display the result

Module 2: Elementary Programming page 68© Dr Jonathan Cazalas

Program 5: Sales Tax

 Write a program to prompt the user for a sales
amount and then display the sales tax due with
exactly two digits after the decimal place.

 Step 1: Design your algorithm

 How to get exactly two decimal places?
 Consider the number 12.8742

 How can we isolate just the 12.87?
 Using only what we know till now…

 Solution:
 Multiply the number by 100

 So we get 1287.42

 Now use the int function: int(1287.42) returns 1287

 Finally, divide by 100: 1287/100 = 12.87

Module 2: Elementary Programming page 69© Dr Jonathan Cazalas

Program 5: Sales Tax

 Write a program to prompt the user for a sales
amount and then display the sales tax due with
exactly two digits after the decimal place.

 Step 2: Implementation (code the algorithm)

Module 2: Elementary Programming page 70© Dr Jonathan Cazalas

Check Point
 Are the following statements valid? If so, show the

printed value.

Type Conversions and Rounding

4

5

22

4

error

error

Module 2: Elementary Programming page 71© Dr Jonathan Cazalas

Program 6: Coin Change Problem

 Write a program that prompts the user for a
“change” amount and displays the correct coins to
be given in change.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 2: Elementary Programming page 72© Dr Jonathan Cazalas

Program 6: Coin Change Problem

 Write a program that prompts the user for a
“change” amount and displays the correct coins to
be given in change.

 Step 1: Problem-solving Phase

1. Prompt user for the change amount.
 Use input and int functions

2. Compute the correct type and number of coins
 But how?

3. Display the result

Module 2: Elementary Programming page 73© Dr Jonathan Cazalas

Program 6: Coin Change Problem

 Write a program that prompts the user for a
“change” amount and displays the correct coins to
be given in change.

 Step 1: Problem-solving Phase

 Assume the user enters 93 cents

 What are the correct coins returned:
 3 quarters

 1 dime

 1 nickel

 3 pennies

 Cool…so how do we make that happen

Module 2: Elementary Programming page 74© Dr Jonathan Cazalas

Program 6: Coin Change Problem

 Write a program that prompts the user for a
“change” amount and displays the correct coins to
be given in change.

 Step 1: Problem-solving Phase

 Calculating coins returned for 93 cents:
 3 quarters

 How we get this: 93 // 25 = 3

 Remaining pennies: 93 % 25 = 18

 1 dime
 How we get this: 18 // 10 = 1

 Remaining pennies: 18 % 10 = 8

Module 2: Elementary Programming page 75© Dr Jonathan Cazalas

Program 6: Coin Change Problem

 Write a program that prompts the user for a
“change” amount and displays the correct coins to
be given in change.

 Step 1: Problem-solving Phase

 Calculating coins returned for 93 cents:
 1 nickel

 How we get this: 8 // 5 = 1

 Remaining pennies: 8 % 5 = 3

 3 pennies
 How we get this: this is just the remaining pennies from answer above

 So now time to translate into code…

Module 2: Elementary Programming page 76© Dr Jonathan Cazalas

Program 6: Coin Change Problem

Step 1: get change amount from user

change = int(input("Please enter the change to be given: "))

Step 2: determine type and quantity of coins

Calculate quarters

quarters = change // 25

pennies_remaining = change % 25

Calculate dimes

dimes = pennies_remaining // 10

pennies_remaining = pennies_remaining % 10

Calculate nickels

nickels = pennies_remaining // 5

pennies = pennies_remaining % 5

Step 3: display the results

print(change, "cents should be given in change as:")

print("\t", quarters, "quarters")

print("\t", dimes, "dimes")

print("\t", nickels, "nickels")

print("\t", pennies, "pennies")

Module 2: Elementary Programming page 77© Dr Jonathan Cazalas

Program 7: Display Current Time

 Write a program that displays current time in GMT
in the format hour:minute:second such as 1:45:19.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 2: Elementary Programming page 78© Dr Jonathan Cazalas

Program 7: Display Current Time

 Write a program that displays current time in GMT
in the format hour:minute:second such as 1:45:19.

 Step 1: Problem-solving Phase
 Python gives us a time() function

 This returns us the number of milliseconds elapsed since the time
00:00:00 on January 1, 1970 GMT
 This is known as the UNIX epoch

 The epoch is the point where time starts

 1970 was the year UNIX started

Module 2: Elementary Programming page 79© Dr Jonathan Cazalas

Program 7: Display Current Time

 Write a program that displays current time in GMT
in the format hour:minute:second such as 1:45:19.

 Step 1: Problem-solving Phase
 Python gives us a time() function

 Example:
 time.time() may return 1285543663.205

 This means 1285543663 seconds and 205 milliseconds

 So…how exactly is this helpful?
 Well, if we know the exact number of milliseconds since January

1, 1970, can we do something with that?
 Sure…we can calculate the number of minutes, hours, days, months, years…

Module 2: Elementary Programming page 80© Dr Jonathan Cazalas

Program 7: Display Current Time

 Write a program that displays current time in GMT
in the format hour:minute:second such as 1:45:19.

 Step 1: Problem-solving Phase

 Algorithm:
1. Obtain current # of milliseconds by invoking time.time():

 Example: 1203183068.328

2. Obtain total seconds, total_seconds, using the int
function:
 Example: int(1203183068.328) = 1203183068

3. Compute the current second by using mod
 total_seconds % 60

 1203183068 % 60 = 8, which is the current second

Module 2: Elementary Programming page 81© Dr Jonathan Cazalas

Program 7: Display Current Time

 Write a program that displays current time in GMT
in the format hour:minute:second such as 1:45:19.

 Step 1: Problem-solving Phase

 Algorithm:
4. Obtain total minutes, total_minutes, by dividing

total_seconds by 60
 1203183068 // 60 = 20053051 minutes

5. Compute the current minute by using mod
 total_minutes % 60

 20053051 % 60 = 31, which is the current minute

6. Obtain total hours, total_hours, by dividing
total_minutes by 60
 20053051 // 60 = 334217 hours

Module 2: Elementary Programming page 82© Dr Jonathan Cazalas

Program 7: Display Current Time

 Write a program that displays current time in GMT
in the format hour:minute:second such as 1:45:19.

 Step 1: Problem-solving Phase

 Algorithm:
7. Compute the current hour from total_hours % 24

 334217 % 24 = 17, which is the current hour

 So we have many steps here
 But once the algorithm is written about (above) and fully

understood…translation to code is straightforward…

Module 2: Elementary Programming page 83© Dr Jonathan Cazalas

Program 7: Display Current Time

import time

current_time = time.time() # Get current time

Obtain the total seconds since midnight, Jan 1, 1970

total_seconds = int(current_time)

Get the current second

current_second = total_seconds % 60

Obtain the total minutes

total_minutes = total_seconds // 60

Compute the current minute in the hour

current_minute = total_minutes % 60

Obtain the total hours

total_hours = total_minutes // 60

Compute the current hour

current_hour = total_hours % 24

Display results

print("Current time is", current_hour, ":", current_minute, ":", current_second, "GMT")

Module 2: Elementary Programming page 84© Dr Jonathan Cazalas

Program 8: Compute Distance

 Write a program that prompts the user to enter two
points and calculates the distance between them.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 2: Elementary Programming page 85© Dr Jonathan Cazalas

Program 8: Compute Distance

 Write a program that prompts the user to enter two
points and calculates the distance between them.

 Step 1: Problem-solving Phase

 This problem is rather straightforward

 Main thing is to remember the ‘ole distance formula:

 𝑑 = 𝑥2 − 𝑥1
2 + 𝑦2 − 𝑦1

2

 And how do we calculate the square root?
 We use the exponent operator: **

 Example: square root of 25: 25 ** 0.5 = 5

Module 2: Elementary Programming page 86© Dr Jonathan Cazalas

Program 8: Compute Distance

 Write a program that prompts the user to enter two
points and calculates the distance between them.

 Step 2: Implementation

Module 2: Elementary Programming page 87© Dr Jonathan Cazalas

Program 8: Compute Distance

 Write a program that prompts the user to enter two
points and calculates the distance between them.

 Discussion:

 We can also use the turtle to:
 Display our points

 Draw a line between them

 Display the distance

 Check it out…

Module 2: Elementary Programming page 88© Dr Jonathan Cazalas

Program 8: Compute Distance

Module 2:
Elementary Programming

Python Boot Camp

