PYTHON BOOT CAMP

Module 3:
Math Functions, Strings,

and Objects

A

Objectives

To solve mathematics problems by using the functions in the math
module (§3.2).

To represent and process strings and characters (§§3.3-3.4).
To encode characters using ASCIl and Unicode (§§3.3.1-3.3.2).

To use the ord to obtain a numerical code for a character and chr to
convert a numerical code to a character (§3.3.3).

To represent special characters using the escape sequence (§3.3.4).
To invoke the print function with the end argument (§3.3.5).

To convert numbers to a string using the str function (§3.3.6).

To use the + operator to concatenate strings (§3.3.7).

To read strings from the console (§3.3.8).

To introduce objects and methods (§3.5).

To format numbers and strings using the format function (§3.6).

To draw various shapes (§3.7).

To draw graphics with colors and fonts (§3.8).

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 2

Common Python Functions

B First, what is a function?

A function is a group of statements that performs a
specific task

And we can broadly classify functions into:
1. Those functions that we will fully define, write, and customize
This comes later (Chapter 6)

2. Those functions that are prebuilt and available to the
programmer as part of the library of the given language

Guess what?

= We’ve been using functions since Day 1!
eval, input, int, and even print

These are all built-in functions and part of the Python library

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 3

Common Python Functions

B Some built-in math functions:
TaBLE 3.1 Simple Python Built-in Functions

Function Description Example
abs (x) Returns the absolute value for x. abs(-2) is 2
max(x1l, x2, ...) Returns the largest among x1, x2, ... max(l, 5, 2)is5
min(xl, x2, ...) Returns the smallest among x1, x2, ... min(l, 5, 2)is1
pow(a, b) Returns a°. Same as a ** b. pow(2, 3)is 8
round (x) Returns an integer nearest to x. If x round(5.4) is 5

is equally close to two integers, round(5.5) is 6

the even one is returned.)
round(4.5) 1s 4

round(x, n) Returns the float value rounded to n round(5.466, 2)is5.47
digits after the decimal point. round(5.463, 2)is5.46

These functions are so common that no “imports” are
needed in order for them to work...you just use them

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 4

Common Python Functions

B Some built-in math functions:

abs (-3) # Returns the absolute value

abs (-3.5) # Returns the absolute value

max (2, 3, 4, 6) # Returns the maximum number
min(2, 3, 4) # Returns the minimum number
pow (2, 3) # Same as 2 ** 3

pow (2.5, 3.5) # Same as 2.5 ** 3.5
24.705294220065465
>>> round(3.51) # Rounds to its nearest integer
4
>>> round(3.4) # Rounds to its nearest integer
3
>>> round(3.1456, 3) # Rounds to 3 digits after the decimal point
3.146

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects

Common Python Functions

B Additional math functions:

The Python math module can be imported and provides
additional math functions and some famous constants

s Functions include:

exp, sqgrt, log, sin, cos, and more

s Constants include:
PI and e

= You import the module similar to importing turtle

= You simply type:
import math
at the beginning of your program

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 6

Common Python Functions

— TABLE 3.2 Mathematical Functions

Function Description Example
fabs (x) Returns the absolute value for x as a float. fabs(-2) is 2.0
ceil (x) Rounds x up to its nearest integer and returns that integer. ceil(2.1)is 3
ceil(-2.1)is -2
floor(x) Rounds x down to its nearest integer and returns that integer. floor(2.1) is 2
floor(-2.1)is -3
exp(x) Returns the exponential function of x (). exp(1) is 2.71828
Tog(x) Returns the natural logarithm of x. log(2.71828) is 1.0
Tog(x, base) Returns the logarithm of x for the specified base. log(100, 10)is 2.0
sqrt(x) Returns the square root of x. sqrt(4.0) is 2
sin(x) Returns the sine of x. x represents an angle in radians. sin(3.14159 / 2)is1
sin(3.14159) is 0
asin(x) Returns the angle in radians for the inverse of sine. asin(1.0)is 1.57
asin(0.5) is 0.523599
cos(x) Returns the cosine of x. x represents an angle in radians. cos(3.14159 / 2)is0
cos(3.14159) is -1
acos(x) Returns the angle in radians for the inverse of cosine. acos(1.0)is0
acos(0.5)is1.0472
tan(x) Returns the tangent of x. x represents an angle in radians. tan(3.14159 / 4)is 1

degrees(x)

radians(x)

Converts angle x from radians to degrees.

Converts angle x from degrees to radians.

tan(0.0) is 0
degrees(1.57) is 90
radians(90) is1.57

© Dr Jonathan Cazalas

Module 3: Math Functions, Strings, & Objects

page 7

Common Python Functions

B Example program:
LisTING 3.1 MathFunctions.py

1 dmport math # import math module to use the math functions
2

3 # Test algebraic functions

4 print("exp(1.0) =", math.exp(l))

5 print("log(2.78) =", math.log(math.e))

6 print("loglo(l0, 10) =", math.log(l0, 10))

7 print("sqrt(4.0) =", math.sqrt(4.0))

8

9 # Test trigonometric functions
10 print("sin(PI / 2) =", math.sin(math.pi / 2))
11 print("cos(PI / 2) =", math.cos(math.pi / 2))
12 print("tan(PI / 2) =", math.tan(math.pi / 2))
13 print("degrees(1.57) =", math.degrees(1.57))
14 print("radians(90) =", math.radians(90))
exp(1.0) = 2.71828182846

log(2.78) = 1.0

1og10(10, 10) = 1.0

sqrt(4.0) = 2.0

sin(PI / 2) = 1.0

cos(PI / 2) = 6.12323399574e-17

tan(PI / 2) = 1.63312393532e+16

degrees(1.57) = 89.9543738355

radians(90) = 1.57079632679

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 8

Common Python Functions

B Example usage:

Having access to these math functions opens doors to
solve a variety of computational problems

An important note:
= Many are not comfortable with math
= But that’s no reason to be scared when seeing formulas!
= You needn’t derive the formula
= All we need to know is what the formula does and how to use it

Just like we didn’t “derive” how a car engine was put together
We just need to know what it does and how to use it

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 9

Common Python Functions

B Example usage:

For example, given three vertices of a triangle:
X2, y2

x1, vyl

we can compute the three angles as follows:

A=acos((a*a-b*b-c*c)/ (-2*Db*cc))
B =acos((b*b-a*a-c*c)/ (-2%a*®*uc))
C=acos((c*c-b*b-a*a / (-2 *a?*b))

= And with that knowledge, we can write a simple program...

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 10

Common Python Functions

B Example usage:
LISTING 3.2 ComputeAngles.py

1 dimport math

2

3 x1, yl, x2, y2, x3, y3 = eval(input("Enter three points: "))

4

5 a = math.sgrt((x2 - x3) * (x2 - x3) + (y2 - y3) * (y2 - y3))

6 b = math.sqgrt((x1 - x3) * (x1 - x3) + (yl - y3) * (yl1 - y3))

7 ¢ = math.sgrt((x1 - x2) * (x1 - x2) + (yl - y2) * (yl1l - y2))

8

9 A = math.degrees(math.acos((a *a -b *b -c*c) / (-2 % b * c)))
10 B = math.degrees(math.acos((b * b - a * a - ¢ * c) / (-2 * a * c)))
11 C = math.degrees(math.acos((c * c - b * b -a * a) / (-2 * a * b)))
12
13 print("The three angles are ", round(A * 100) / 100.0,
14 round(B * 100) / 100.0, round(C * 100) / 100.0)

Enter three points: 1, 1, 6.5, 1, 6.5, 2.5 |-enter
The three angles are 15.26 90.0 74.74

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 11

Common Python Functions

BCheck Point:

Evaluate the following functions:

(a) math.sqrt(4) (j) math.floor(-2.5)
(b)ymath.s1n(2 * math.pi) (k) round(3.5)
(c)math.cos(2 * math.pi) (1) round(-2.5)

(d)min(2, 2, 1) (m) math.fabs(2.5)

(e) math.log(math.e) (n) math.ceil1(2.5)

(f)y math.exp (1) (o) math.floor(2.5)
(g)max(2, 3, 4) (p) round(-2.5)

(h) abs(-2.5) (q) round(2.6)

(1) math.ceil1(-2.5) (r) round(math.fabs(-2.5))

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 12

Strings and Characters

B What is a string?
A string is a sequence of characters

= And this sequence could just be a string of numbers
= Example:
“3.145” would be considered a string with five characters in it
In Python, a string must be enclosed in either double
quotes (“) or single quotes ()

Examples:
message = “good morning”
letter = “A”
letter = ‘A’ # these are the same!
number string = “2018” # same as number string = ‘2018’

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 13

Strings and Characters

B What is a string?
Note:

= Python does not have a specific data type for a single character

Many (most) languages do!

= In Python, a single character is simply represented as a single-
character string

We'd like to be consistent with other languages:
Therefore:

= Double quotes will be used for a string with more than one
character

= Single quotes will be used for a single character string

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 14

A Brief Hiatus...

B A (very quick) primer on numbers!

The most common number system and the one we use
most often is decimal

Decimal is base what?
m Base 10
What does this mean?

s Means there are ten numbers we use
= 0,1,23,45,6,7,8 and9

Computers use binary numbers. Binary is base what?

m Base 2
What does this mean?

= There are only two numbers used: 0 and 1 (known as bits)

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 15

A Brief Hiatus...

B A (very quick) primer on numbers!
How to convert from binary to decimal?

This is actually really easy
= Each digit in a binary number can be 1 or 0
Think of this as on or off

= And each of these digits has a value (a weight)
And that value counts towards the total if the bit is set to 1 (if it is “on”)
= The least-significant bit is on the right
If the bitis 1, it’s value is simply 1
= The values of each digit to the left increase by powers of 2
2,4,8,16,32, 64, 128, 256, ...

This is easiest to understand with pictures and examples...

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 16

A Brief Hiatus...

B A (very quick) primer on numbers!
Consider the following:

01101001

T ll_'&p alinthe 1's place
a 0 in the 2's place
a 0 in the 4's place
a 1in the 8's place
a0 in the 16's place

L} a linthe 32's place
k’ a linthe 64's place

a 0 in the 128's place

—

= The decimal equivalent is:
64 +32+8+1=105

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects

page 17

A Brief Hiatus...

B A (very quick) primer on numbers!
Another example/picture:
Binary to Decimal
i) N I RIS) [W) N

2 122121212]2]2 ¢
128+64+ 32+ 16+ + + 2+ 1 =235

This binary___ Equals this

Number. .. - 1 0 0 1 0 1 0 1 decimal number
2020222222 |

1286+ 0+ 0+ 16+ + + 0+ 1 =149

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 18

A Brief Hiatus...

B A (very quick) primer on numbers!

Check Yourself:
What is the decimal value of the following:
= 1001
9

1010
10

0111
7

1111
15

1000
8

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects

page 19

A Brief Hiatus...

B A (very quick) primer on numbers!
Binary is easy to understand (once we practice it)
But it’s a pain to represent!
= It takes so much digits to represent a basic number!

Hexadecimal to the rescue!

= Hexadecimal (aka Hex) is another number system
= Hex is base what?

Hex is base 16

= What does this mean?
It means there are 16 numbers
Huh? But we only have 10 numbers (0 to 9). How do we get 16???

It is kinda weird at first, but here are the 16 hex numbers:
= 0,1,23,4,5,6,7,8,9,A,B,C,D,E, F

m__So Fin hexisthe same as 15 in decimal

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 20

So why hex?

A Brief Hiatus...

B A (very quick) primer on numbers!

= Hex can very seamlessly (easily) represent binary numbers

Decimal Binary Hexadecimal
(Base 10) (Base 2) (Base 16)
0 0000]

1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
& 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

© Dr Jonathan Cazalas

Module 3: Math Functions, Strings, & Objects

page 21

Strings and Characters

B Character encoding:

Computer uses binary numbers internally

= a sequence of Os and 1s

All characters are in fact stored as a sequence of Os and 1s

Mapping a character to its binary representation is called
character encoding

There are different ways to map a character to binary

Two popular varieties:
= ASCII
= Unicode

© Dr Jonathan Cazalas

Module 3: Math Functions, Strings, & Objects page 22

Strings and Characters

H ASCII

Stands for:
American Standard Code for Information Interchange

= NO need to remember that!

ASCll is a 7-bit encoding scheme
= What does that mean?

= This means that a total of 7 bits are used to represent characters

Example:
= (0110110 is a group of 7 bits
It represents a specific character in ASCII
= 1100100 is another group of 7 bits
And it represents a different character in ASCI|

= With 7 bits, this means 27 possible different groups of those bits
= So 128 different characters can be encoded with ASCII

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 23

Strings and Characters

H ASCI|
128 characters is not very much

= Sure, it may suffice a single language, but not much more
= Consider 26 uppercase characters in English alphabet
= And 26 lower case

Yes, these are encoded differently...they are different characters
= That’s already 52 characters

= Now add in numbers, punctuation marks, and other common
characters

s We quickly use up those 128 spots in ASCII

Long story short:
= ASCII simply isn’t enough
= So enter Unicode...

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 24

Strings and Characters

B Unicode

Easy summary:
= Allows encoding of 1,114,112 characters!
= Yes, MORE than sufficient for everything we need
Encoding:
= Unicode starts with \u and then has 4 hexadecimal digits
= These digits run from \u0000 to \uFFFF
Example:
LISTING 3.3 DisplayUnicode. py

import turtle

1
2
3 turtle.write("\u6B22\u8FCE \u03bl \u03b2 \u03b3'")
4
5

turtle.done()

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 25

Strings and Characters

B ord and chr functions:

Python provides two helpful functions:

s ord (ch) function for returning the ASCII code for the character

ch

s chr (code) function for returning the character represented by

the code.

>>> ch = 'a’
>>> ord(ch)
97
>>> chr(98)
lbl
>>> ord('A")
65

>>>

© Dr Jonathan Cazalas

Module 3: Math Functions, Strings, & Objects

page 26

Strings and Characters

B Escape Sequences for Special Characters

Consider the following example:
= How would you print a message with quotation marks in Python?

= Meaning, what if you wanted to quote someone and print the
actual quotation

= Could you do this?

print ("He said, "John's program is easy to read"")

s The answer is no. That won’t work

= When Python sees the second double quotation mark, it
understands that the string is finished/complete

= You would print this as follows:

print ("He said, \"John's program is easy to read\"")

= Notice the backslashes...that is called an ESCAPE sequence

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 27

Strings and Characters
B Escape Sequences for Special Characters

Escape sequences is a special notation used to represent
special characters

= This notation consists of a backslash followed by a letter or a
combination of digits

TABLE 3.3 Python Escape Sequences

Character Escape Sequence Name Numeric Value
\b Backspace 8
\t Tab 9
\n Linefeed 10
\f Formfeed 12
\r Carriage Return 13
\\ Backslash 92
Single Quote 39
Double Quote 34

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 28

Strings and Characters

B Printing without the newline
The print function automatically prints a new line (\n)

= This causes the output to advance to the next line

What if you don’t want to advance to the next line?

= You use the print function with a special argument

print (item, end = "anyendingstring")

For example, consider the following code:

print ("AAA", end = " ")
print ("BBB", end = '"')
print ("CCC", end = "*x**1')
print ("DDD", end = '***'")

= Output: AAA BBBCCC***DDD* * *

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 29

Strings and Characters

B Printing without the newline
Another example:

= Consider the following code:
radius = 3
print ("The area is", radius * radius * math.pi, end = " ")

print ("and the perimeter is", 2 * radius)

= The output:

The area 1is 28.26 and the perimeter is 6

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 30

Strings and Characters

B The str function

The str function can be used to convert a number into a
string

>>> S str(3.4) # Convert a float to string

>>> S
13.4"
>>> S
>>> S
130

>>>

str(3) # Convert an integer to string

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 31

Strings and Characters

B The String Concatenation Operator

We normally view the + sign as addition
= and this is okay

But in programming languages, the + operator has
another meaning: concatenation

We can use the + operator to concatenate two strings

>>> message = "Welcome " + "to " + "Python"
>>> message

'Welcome to Python'

>>> chapterNo = 3

>>> s = "Chapter " + str(chapterNo)

>>> S

'"Chapter 3'

>>>

O~ VD WN

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 32

Strings and Characters

B Reading strings from the console

We've actually been doing this for some time now
Python understands all input as a string

= We then used the eval and int functions to convert the string to
other values

input("Enter a string: ")
s2 input("Enter a string: ")
s3 input("Enter a string: ")
print(sl is " + sl)
print(""s2 is " 4+ s2)
print("s3 1is " 4+ s3)

Example: s

Enter a string: Welcome |-enter
Enter a string: to |-enter
Enter a string: Python |-enter
sl is Welcome

s2 1is to
s3 is Python

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 33

Problem 1: Range Calculator

B Write a program to calculate the number of miles
remaining before you run out of gas!

This is very common in most cars these days.

B Remember:

Step 1: Problem-solving Phase
Step 2: Implementation Phase

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 34

Problem 1: Range Calculator

B Write a program to calculate the number of miles
remaining before you run out of gas!

This is very common in most cars these days.

B Step 1: Problem-solving Phase

First, let us see a sample run of the program...

>>>

What is the initial odometer reading: 50000
How many gallons of gas does your tank hold: 15

What was your second odometer reading: 50020
How many gallons were left then: 14
You can go 280 miles before needing to refuel.
280.0

>>>

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 35

Problem 1: Range Calculator

B Write a program to calculate the number of miles
remaining before you run out of gas!

This is very common in most cars these days.

B Step 1: Problem-solving Phase
After some thought (few minutes probably)...
Hopefully we realize the following:

= We need the miles driven

Ending reading — starting reading

= We need the amount of gas used
Starting gas — ending gas

= We need to calculate the miles per gallon thus far
= And we then multiply that times the gas remaining...

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 36

Problem 1: Range Calculator

B Write a program to calculate the number of miles
remaining before you run out of gas!

This is very common in most cars these days.

B Step 2: Implementation Phase
Check portal for a sample solution!

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 37

Intro to Objects and Methods

B What are objects and OOP?
OOP stands for Object-oriented Programming

= For now...that’s all you need to know!
» We'll get to that concept later on

At the core of OOP is objects...so what are objects?
Well, in Python, ALL data are objects!

= This includes numbers and strings

= And this is different from many other languages

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 38

Intro to Objects and Methods

B What are objects and OOP?

“Um...again, so what are objects?!?”

m Consider and int variablesuchasa = 777
normally students would imagine that int value, 777, just floating around in

computer memory
With objects, we do not think of variable a as storing the value 777

Rather, a stores a reference, and that reference points to a box

= and the value 777 can be found inside that box

A picture is helpful
= Given the code:

a = 777
= Here’s how you can visualize this:
a

o 777

Module 3: Math Functions, Strings, & Objects

© Dr Jonathan Cazalas page 39

Intro to Objects and Methods

B What are objects and OOP?

“So why is this helpful?”
= Long answer: many reasons...and they will come up

= But for now, we can perform operations on these objects!
Operations made for and used with objects are called methods.

Example:

m s = “Welcome”
Remember: the variable s stores a reference that points to a box, and the
string “Welcome” can be found inside that box

Now we can perform methods on that box!

sl = s.lower ()
print (sl) # “welcome” is printed

s2 = s.upper ()
print (s2) # “WELCOME” is printed

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 40

Intro to Objects and Methods

B Some interesting functions for objects

Python gives the id and the t ype functions to get
information about our objects

s 1d: this is the actual reference
saved inside the variable

Shell

>>»» a = 777

Such as the reference saved in >>> id(a)
“_n . 92839968
a” on that last picture
>>> type(a)
s type: this refers to the type <class 'int'>
1 1 >»>> b = 3.8
of the given object 23 o)
92396256

= These functions are rarely 155 tymelh)
ype

used in programming <class "float'>
- = "Welcome"
= But they are helpful when first 030 ey e

learning about objects 92835968

>»» type(s)
<class '"str'>

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 41

Intro to Objects and Methods

B Additional useful String methods
strip():

= used to removed whitespace characters from both sides of a

string
Whitespace includes spaces, tabs, and newlines

Shel
»»> s = "\t\t\t\t\tHello
>»> print(s)

Hello

>»> s.strip()
'Hello'

>»> print(s)
Hello

>»> s = s.strip()
>»> print(s)

Hello

You can read about other methods here:
s https://www.w3schools.com/python/python ref string.asp

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 42

https://www.w3schools.com/python/python_ref_string.asp

Formatting Numbers & Strings

B Formatting is often helpful and even needed
Consider the following code:

>>> amount = 12618.98

>>> interestRate = 0.0013

>>> interest = amount * interestRate
>>> print("Interest is'", interest)
Interest is 16.404674

>>>

= The interest is currency

So it’s desirable to have two decimals

We could rewrite the code as follows

>>> amount = 12618.98

>>> interestRate = 0.0013

>>> interest = amount * interestRate

>>> print("Interest is", round(interest, 2))

’ . i —_— 4
Igitc(s)::;llﬂ i::e'"e“ 1s 16.4 Should be 16.40

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 43

Formatting Numbers & Strings

B Formatting is often helpful and even needed
The solution is formatted printing:

>>> amount = 12618.98
>>> jnterestRate = 0.0013
>>> jnterest = amount * interestRate

>>> print("Interest is", format(interest, ".2f"))
Interest is 16.40
>>>

Syntax:

format (1tem, format-specifier)

Here, item is a number of a string

And format-specifier is a string that specifies how the item is to be
formatted

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 44

Formatting Numbers & Strings

B Formatting Floating-Point Numbers

Consider the following code and output: |e— 10 —]
print (format (57.467657, "10.2£f")) 1111 57.47
print(format(12345678 923, "10.2f")) 123456782.92
print (format (57.4, "10.2£")) [T1T11157.40
print(format(57, "10.2£f")) o 57.00

You specify a width, a precision, and a conversion code
= The width is how many spaces to print the number
= The precision is how many digits after the decimal place

= The conversion code, in this example, f, tells Python that we are

formatting a floating-point number
[10] . ~<— format specifier

field width] convelrsion code

precision

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 45

Formatting Numbers & Strings

B Formatting Floating-Point Numbers

Comments:
= By default, the number is aligned to the right within the specified
width
= If the number is larger than the width, the width is automatically
increased

= You can also omit the width specifier
Example: print (format (57.467657, ".2f"))

In this case, the width is set automatically

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 46

Formatting Numbers & Strings

B Formatting as a Percentage

We can use conversion code % to format a percentage

= And if we use “10.2%" as the full format specifier, the number is
first multiplied by 100 and displayed with a % sign

print(format(0.53457, "10.2%"))
print(format(0.0033923, "10.2%"))
print(format(7.4, "10.2%"))
print(format(57, "10.2%"))

s Result: B

10—
[T 53.46%
[ITT0 0. 34%
[T 740. 00%

11 5700.00%

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 47

Formatting Numbers & Strings

B Justifying Format
Default: number is right justified
We can use the < or > symbols for justification as well

print(format(57.467657, "10.2f"))
print(format(57.467657, "<10.2f”))

displays
~— 10—
OT111157.47
57.47

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 48

Formatting Numbers & Strings

B Formatting Integers

The conversion codes d, %, o, and b:
= used to format an integer in decimal, hexadecimal, octal, or

binary
= We can also specify a width for the conversion

print(format(59832, "10d"))
print(format(59832, "<10d"))
print(format(59832, "10x"))
print(format(59832, "<10x'))

displays

|e— 10 —>|
[IT11 59832
59832
[T e9b8
e9b8

Module 3: Math Functions, Strings, & Objects

© Dr Jonathan Cazalas page 49

Formatting Numbers & Strings

B Formatting Strings

You can use the conversion code s to format a string with
a specified width

print(format("Welcome to Python", "20s"))
print(format("Welcome to Python", '"<20s™))
print(format("'Welcome to Python", '">20s"))
print(format("Welcome to Python and Java', '">20s"))

displays

| 20 > |
Welcome to Python
Welcome to Python
[T Welcome to Python

Welcome to Python and Java

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 50

Formatting Numbers & Strings

B Frequently Used Specifiers

Specifier Format

"10.2f" Format the float item with width 10 and precision 2.

"10.2e" Format the float item in scientific notation with width 10 and precision 2.
"5d" Format the integer item in decimal with width 5.

"5x" Format the integer item in hexadecimal with width 5.

"50" Format the integer item in octal with width 5.

"S5b" Format the integer item in binary with width 5.

"10.2%" Format the number in decimal.

"50s" Format the string item with width 50.

"<10.2f” Left-justify the formatted item.
">10.2f" Right-justify the formatted item.

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 51

Problem 2: Kool-Aid

B Write a program to determine the number of cups
of Kool-Aid that must be sold in order to meet a
specified goal (see sample).

B Remember:

Step 1: Problem-solving Phase
Step 2: Implementation Phase

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 52

Problem 2: Kool-Aid

B Write a program to determine the number of cups
of Kool-Aid that must be sold in order to meet a
specified goal (see sample).

B Step 1: Problem-solving Phase
First, let us see a sample run of the program...

>>>

How many dollars is the rent for your stand? 5

How many cents do the materials cost, per glass? 2
How many cents do you charge per glass? 25

What is your profit goal, in dollars? 350

You must sell 240 cups of Kool-Aid to meet your goal.

>>>

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 53

Problem 2: Kool-Aid

B Write a program to determine the number of cups
of Kool-Aid that must be sold in order to meet a
specified goal (see sample).

B Step 1: Problem-solving Phase
Spend some time to think this one through on paper
Once you have it solved on paper, try to code it
You'll likely get really close

= and maybe exactly close on some cases

But there’s one additional thing to think of...

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 54

Problem 2: Kool-Aid

B Write a program to determine the number of cups
of Kool-Aid that must be sold in order to meet a
specified goal (see sample).

B Step 2: Implementation Phase
Check portal for a sample solution!

© Dr Jonathan Cazalas Module 3: Math Functions, Strings, & Objects page 55

PYTHON BOOT CAMP

Module 3:
Math Functions, Strings,

and Objects

A

