
Module 3:
Math Functions, Strings,

and Objects

Python Boot Camp

Module 3: Math Functions, Strings, & Objects page 2© Dr Jonathan Cazalas

Objectives

 To solve mathematics problems by using the functions in the math
module (§3.2).

 To represent and process strings and characters (§§3.3-3.4).
 To encode characters using ASCII and Unicode (§§3.3.1-3.3.2).
 To use the ord to obtain a numerical code for a character and chr to

convert a numerical code to a character (§3.3.3).
 To represent special characters using the escape sequence (§3.3.4).
 To invoke the print function with the end argument (§3.3.5).
 To convert numbers to a string using the str function (§3.3.6).
 To use the + operator to concatenate strings (§3.3.7).
 To read strings from the console (§3.3.8).
 To introduce objects and methods (§3.5).
 To format numbers and strings using the format function (§3.6).
 To draw various shapes (§3.7).
 To draw graphics with colors and fonts (§3.8).

Module 3: Math Functions, Strings, & Objects page 3© Dr Jonathan Cazalas

Common Python Functions

 First, what is a function?

 A function is a group of statements that performs a
specific task

 And we can broadly classify functions into:
1. Those functions that we will fully define, write, and customize

 This comes later (Chapter 6)

2. Those functions that are prebuilt and available to the
programmer as part of the library of the given language

 Guess what?
 We’ve been using functions since Day 1!

 eval, input, int, and even print

 These are all built-in functions and part of the Python library

Module 3: Math Functions, Strings, & Objects page 4© Dr Jonathan Cazalas

Common Python Functions

 Some built-in math functions:

 These functions are so common that no “imports” are
needed in order for them to work…you just use them

Module 3: Math Functions, Strings, & Objects page 5© Dr Jonathan Cazalas

Common Python Functions

 Some built-in math functions:

>>> abs(-3) # Returns the absolute value

3

>>> abs(-3.5) # Returns the absolute value

3.5

>>> max(2, 3, 4, 6) # Returns the maximum number

6

>>> min(2, 3, 4) # Returns the minimum number

2

>>> pow(2, 3) # Same as 2 ** 3

8

>>> pow(2.5, 3.5) # Same as 2.5 ** 3.5

24.705294220065465

>>> round(3.51) # Rounds to its nearest integer

4

>>> round(3.4) # Rounds to its nearest integer

3

>>> round(3.1456, 3) # Rounds to 3 digits after the decimal point

3.146

>>>

Module 3: Math Functions, Strings, & Objects page 6© Dr Jonathan Cazalas

Common Python Functions

 Additional math functions:
 The Python math module can be imported and provides

additional math functions and some famous constants
 Functions include:

 exp, sqrt, log, sin, cos, and more

 Constants include:
 PI and e

 You import the module similar to importing turtle

 You simply type:
import math

at the beginning of your program

Module 3: Math Functions, Strings, & Objects page 7© Dr Jonathan Cazalas

Common Python Functions

Module 3: Math Functions, Strings, & Objects page 8© Dr Jonathan Cazalas

Common Python Functions

 Example program:

Module 3: Math Functions, Strings, & Objects page 9© Dr Jonathan Cazalas

Common Python Functions

 Example usage:

 Having access to these math functions opens doors to
solve a variety of computational problems

 An important note:
 Many are not comfortable with math

 But that’s no reason to be scared when seeing formulas!

 You needn’t derive the formula

 All we need to know is what the formula does and how to use it
 Just like we didn’t “derive” how a car engine was put together

 We just need to know what it does and how to use it

Module 3: Math Functions, Strings, & Objects page 10© Dr Jonathan Cazalas

Common Python Functions

 Example usage:

 For example, given three vertices of a triangle:

we can compute the three angles as follows:

 And with that knowledge, we can write a simple program…

Module 3: Math Functions, Strings, & Objects page 11© Dr Jonathan Cazalas

Common Python Functions

 Example usage:

Module 3: Math Functions, Strings, & Objects page 12© Dr Jonathan Cazalas

Common Python Functions

Check Point:

Module 3: Math Functions, Strings, & Objects page 13© Dr Jonathan Cazalas

Strings and Characters

 What is a string?

 A string is a sequence of characters
 And this sequence could just be a string of numbers

 Example:
 “3.145” would be considered a string with five characters in it

 In Python, a string must be enclosed in either double
quotes (“) or single quotes (‘)

 Examples:
message = “good morning”

letter = “A”

letter = ‘A’ # these are the same!

number_string = “2018” # same as number_string = ‘2018’

Module 3: Math Functions, Strings, & Objects page 14© Dr Jonathan Cazalas

Strings and Characters

 What is a string?

 Note:
 Python does not have a specific data type for a single character

 Many (most) languages do!

 In Python, a single character is simply represented as a single-
character string

 We’d like to be consistent with other languages:

 Therefore:
 Double quotes will be used for a string with more than one

character

 Single quotes will be used for a single character string

Module 3: Math Functions, Strings, & Objects page 15© Dr Jonathan Cazalas

A Brief Hiatus…

 A (very quick) primer on numbers!

 The most common number system and the one we use
most often is decimal

 Decimal is base what?
 Base 10

 What does this mean?
 Means there are ten numbers we use

 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

 Computers use binary numbers. Binary is base what?
 Base 2

 What does this mean?
 There are only two numbers used: 0 and 1 (known as bits)

Module 3: Math Functions, Strings, & Objects page 16© Dr Jonathan Cazalas

A Brief Hiatus…

 A (very quick) primer on numbers!

 How to convert from binary to decimal?

 This is actually really easy
 Each digit in a binary number can be 1 or 0

 Think of this as on or off

 And each of these digits has a value (a weight)
 And that value counts towards the total if the bit is set to 1 (if it is “on”)

 The least-significant bit is on the right
 If the bit is 1, it’s value is simply 1

 The values of each digit to the left increase by powers of 2
 2, 4, 8, 16, 32, 64, 128, 256, …

 This is easiest to understand with pictures and examples…

Module 3: Math Functions, Strings, & Objects page 17© Dr Jonathan Cazalas

A Brief Hiatus…

 A (very quick) primer on numbers!

 Consider the following:

 The decimal equivalent is:
 64 + 32 + 8 + 1 = 105

Module 3: Math Functions, Strings, & Objects page 18© Dr Jonathan Cazalas

A Brief Hiatus…

 A (very quick) primer on numbers!

 Another example/picture:

Module 3: Math Functions, Strings, & Objects page 19© Dr Jonathan Cazalas

A Brief Hiatus…

 A (very quick) primer on numbers!

 Check Yourself:
What is the decimal value of the following:

 1001
 9

 1010
 10

 0111
 7

 1111
 15

 1000
 8

Module 3: Math Functions, Strings, & Objects page 20© Dr Jonathan Cazalas

A Brief Hiatus…

 A (very quick) primer on numbers!

 Binary is easy to understand (once we practice it)

 But it’s a pain to represent!
 It takes so much digits to represent a basic number!

 Hexadecimal to the rescue!
 Hexadecimal (aka Hex) is another number system

 Hex is base what?
 Hex is base 16

 What does this mean?
 It means there are 16 numbers

 Huh? But we only have 10 numbers (0 to 9). How do we get 16???

 It is kinda weird at first, but here are the 16 hex numbers:

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

 So F in hex is the same as 15 in decimal

Module 3: Math Functions, Strings, & Objects page 21© Dr Jonathan Cazalas

A Brief Hiatus…

 A (very quick) primer on numbers!

 So why hex?
 Hex can very seamlessly (easily) represent binary numbers

Module 3: Math Functions, Strings, & Objects page 22© Dr Jonathan Cazalas

Strings and Characters

 Character encoding:

 Computer uses binary numbers internally
 a sequence of 0s and 1s

 All characters are in fact stored as a sequence of 0s and 1s

 Mapping a character to its binary representation is called
character encoding

 There are different ways to map a character to binary

 Two popular varieties:
 ASCII

 Unicode

Module 3: Math Functions, Strings, & Objects page 23© Dr Jonathan Cazalas

Strings and Characters

 ASCII

 Stands for:
American Standard Code for Information Interchange

 no need to remember that!

 ASCII is a 7-bit encoding scheme
 What does that mean?

 This means that a total of 7 bits are used to represent characters
 Example:

 0110110 is a group of 7 bits

 It represents a specific character in ASCII

 1100100 is another group of 7 bits

 And it represents a different character in ASCII

 With 7 bits, this means 27 possible different groups of those bits

 So 128 different characters can be encoded with ASCII

Module 3: Math Functions, Strings, & Objects page 24© Dr Jonathan Cazalas

Strings and Characters

 ASCII

 128 characters is not very much
 Sure, it may suffice a single language, but not much more

 Consider 26 uppercase characters in English alphabet

 And 26 lower case
 Yes, these are encoded differently…they are different characters

 That’s already 52 characters

 Now add in numbers, punctuation marks, and other common
characters

 We quickly use up those 128 spots in ASCII

 Long story short:
 ASCII simply isn’t enough

 So enter Unicode…

Module 3: Math Functions, Strings, & Objects page 25© Dr Jonathan Cazalas

Strings and Characters

 Unicode

 Easy summary:
 Allows encoding of 1,114,112 characters!

 Yes, MORE than sufficient for everything we need

 Encoding:
 Unicode starts with \u and then has 4 hexadecimal digits

 These digits run from \u0000 to \uFFFF

 Example:

Module 3: Math Functions, Strings, & Objects page 26© Dr Jonathan Cazalas

Strings and Characters

 ord and chr functions:

 Python provides two helpful functions:
 ord(ch) function for returning the ASCII code for the character
ch

 chr(code) function for returning the character represented by
the code.

Module 3: Math Functions, Strings, & Objects page 27© Dr Jonathan Cazalas

Strings and Characters

 Escape Sequences for Special Characters

 Consider the following example:
 How would you print a message with quotation marks in Python?

 Meaning, what if you wanted to quote someone and print the
actual quotation

 Could you do this?
print("He said, "John's program is easy to read"")

 The answer is no. That won’t work

 When Python sees the second double quotation mark, it
understands that the string is finished/complete

 You would print this as follows:
print("He said, \"John's program is easy to read\"")

 Notice the backslashes…that is called an ESCAPE sequence

Module 3: Math Functions, Strings, & Objects page 28© Dr Jonathan Cazalas

Strings and Characters

 Escape Sequences for Special Characters

 Escape sequences is a special notation used to represent
special characters

 This notation consists of a backslash followed by a letter or a
combination of digits

Module 3: Math Functions, Strings, & Objects page 29© Dr Jonathan Cazalas

Strings and Characters

 Printing without the newline

 The print function automatically prints a new line (\n)
 This causes the output to advance to the next line

 What if you don’t want to advance to the next line?
 You use the print function with a special argument

print(item, end = "anyendingstring")

 For example, consider the following code:
print("AAA", end = ' ')

print("BBB", end = '')

print("CCC", end = '***')

print("DDD", end = '***')

 Output: AAA BBBCCC***DDD***

Module 3: Math Functions, Strings, & Objects page 30© Dr Jonathan Cazalas

Strings and Characters

 Printing without the newline

 Another example:
 Consider the following code:

radius = 3

print("The area is", radius * radius * math.pi, end = ' ')

print("and the perimeter is", 2 * radius)

 The output:
The area is 28.26 and the perimeter is 6

Module 3: Math Functions, Strings, & Objects page 31© Dr Jonathan Cazalas

Strings and Characters

 The str function

 The str function can be used to convert a number into a
string

Module 3: Math Functions, Strings, & Objects page 32© Dr Jonathan Cazalas

Strings and Characters

 The String Concatenation Operator

 We normally view the + sign as addition
 and this is okay

 But in programming languages, the + operator has
another meaning: concatenation

 We can use the + operator to concatenate two strings

Module 3: Math Functions, Strings, & Objects page 33© Dr Jonathan Cazalas

Strings and Characters

 Reading strings from the console

 We’ve actually been doing this for some time now

 Python understands all input as a string
 We then used the eval and int functions to convert the string to

other values

 Example:

Module 3: Math Functions, Strings, & Objects page 34© Dr Jonathan Cazalas

Problem 1: Range Calculator

 Write a program to calculate the number of miles
remaining before you run out of gas!

 This is very common in most cars these days.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 3: Math Functions, Strings, & Objects page 35© Dr Jonathan Cazalas

Problem 1: Range Calculator

 Write a program to calculate the number of miles
remaining before you run out of gas!

 This is very common in most cars these days.

 Step 1: Problem-solving Phase

 First, let us see a sample run of the program…

Module 3: Math Functions, Strings, & Objects page 36© Dr Jonathan Cazalas

Problem 1: Range Calculator

 Write a program to calculate the number of miles
remaining before you run out of gas!

 This is very common in most cars these days.

 Step 1: Problem-solving Phase

 After some thought (few minutes probably)…

 Hopefully we realize the following:
 We need the miles driven

 Ending reading – starting reading

 We need the amount of gas used
 Starting gas – ending gas

 We need to calculate the miles per gallon thus far

 And we then multiply that times the gas remaining…

Module 3: Math Functions, Strings, & Objects page 37© Dr Jonathan Cazalas

Problem 1: Range Calculator

 Write a program to calculate the number of miles
remaining before you run out of gas!

 This is very common in most cars these days.

 Step 2: Implementation Phase

 Check portal for a sample solution!

Module 3: Math Functions, Strings, & Objects page 38© Dr Jonathan Cazalas

Intro to Objects and Methods

 What are objects and OOP?

 OOP stands for Object-oriented Programming
 For now…that’s all you need to know!

 We’ll get to that concept later on

 At the core of OOP is objects…so what are objects?

 Well, in Python, ALL data are objects!
 This includes numbers and strings

 And this is different from many other languages

Module 3: Math Functions, Strings, & Objects page 39© Dr Jonathan Cazalas

Intro to Objects and Methods

 What are objects and OOP?

 “Um…again, so what are objects?!?”
 Consider and int variable such as a = 777

 normally students would imagine that int value, 777, just floating around in
computer memory

 With objects, we do not think of variable a as storing the value 777

 Rather, a stores a reference, and that reference points to a box

 and the value 777 can be found inside that box

 A picture is helpful
 Given the code:

a = 777

 Here’s how you can visualize this:

*

a
777

Module 3: Math Functions, Strings, & Objects page 40© Dr Jonathan Cazalas

Intro to Objects and Methods

 What are objects and OOP?

 “So why is this helpful?”
 Long answer: many reasons…and they will come up

 But for now, we can perform operations on these objects!
 Operations made for and used with objects are called methods.

 Example:
 s = “Welcome”

 Remember: the variable s stores a reference that points to a box, and the
string “Welcome” can be found inside that box

 Now we can perform methods on that box!

s1 = s.lower()

print(s1) # “welcome” is printed

s2 = s.upper()

print(s2) # “WELCOME” is printed

Module 3: Math Functions, Strings, & Objects page 41© Dr Jonathan Cazalas

Intro to Objects and Methods

 Some interesting functions for objects
 Python gives the id and the type functions to get

information about our objects
 id: this is the actual reference

saved inside the variable
 Such as the reference saved in

“a” on that last picture

 type: this refers to the type
of the given object

 These functions are rarely
used in programming

 But they are helpful when first
learning about objects

Module 3: Math Functions, Strings, & Objects page 42© Dr Jonathan Cazalas

Intro to Objects and Methods

 Additional useful String methods

 strip():
 used to removed whitespace characters from both sides of a

string
 Whitespace includes spaces, tabs, and newlines

 You can read about other methods here:

 https://www.w3schools.com/python/python_ref_string.asp

https://www.w3schools.com/python/python_ref_string.asp

Module 3: Math Functions, Strings, & Objects page 43© Dr Jonathan Cazalas

Formatting Numbers & Strings

 Formatting is often helpful and even needed

 Consider the following code:

 The interest is currency
 So it’s desirable to have two decimals

 We could rewrite the code as follows

That’s still
not correct!

Should be 16.40

Module 3: Math Functions, Strings, & Objects page 44© Dr Jonathan Cazalas

Formatting Numbers & Strings

 Formatting is often helpful and even needed

 The solution is formatted printing:

 Syntax:
format(item, format-specifier)

 Here, item is a number of a string

 And format-specifier is a string that specifies how the item is to be
formatted

Module 3: Math Functions, Strings, & Objects page 45© Dr Jonathan Cazalas

Formatting Numbers & Strings

 Formatting Floating-Point Numbers

 Consider the following code and output:
print(format(57.467657, "10.2f"))

print(format(12345678.923, "10.2f"))

print(format(57.4, "10.2f"))

print(format(57, "10.2f"))

 You specify a width, a precision, and a conversion code
 The width is how many spaces to print the number

 The precision is how many digits after the decimal place

 The conversion code, in this example, f, tells Python that we are
formatting a floating-point number

Module 3: Math Functions, Strings, & Objects page 46© Dr Jonathan Cazalas

Formatting Numbers & Strings

 Formatting Floating-Point Numbers

 Comments:
 By default, the number is aligned to the right within the specified

width

 If the number is larger than the width, the width is automatically
increased

 You can also omit the width specifier
 Example: print(format(57.467657, ".2f"))

 In this case, the width is set automatically

Module 3: Math Functions, Strings, & Objects page 47© Dr Jonathan Cazalas

Formatting Numbers & Strings

 Formatting as a Percentage
 We can use conversion code % to format a percentage

 And if we use “10.2%” as the full format specifier, the number is
first multiplied by 100 and displayed with a % sign

 Result:

Module 3: Math Functions, Strings, & Objects page 48© Dr Jonathan Cazalas

Formatting Numbers & Strings

 Justifying Format

 Default: number is right justified

 We can use the < or > symbols for justification as well

Module 3: Math Functions, Strings, & Objects page 49© Dr Jonathan Cazalas

Formatting Numbers & Strings

 Formatting Integers
 The conversion codes d, x, o, and b:

 used to format an integer in decimal, hexadecimal, octal, or
binary

 We can also specify a width for the conversion

Module 3: Math Functions, Strings, & Objects page 50© Dr Jonathan Cazalas

Formatting Numbers & Strings

 Formatting Strings
 You can use the conversion code s to format a string with

a specified width

Module 3: Math Functions, Strings, & Objects page 51© Dr Jonathan Cazalas

Formatting Numbers & Strings

 Frequently Used Specifiers

Module 3: Math Functions, Strings, & Objects page 52© Dr Jonathan Cazalas

Problem 2: Kool-Aid

 Write a program to determine the number of cups
of Kool-Aid that must be sold in order to meet a
specified goal (see sample).

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 3: Math Functions, Strings, & Objects page 53© Dr Jonathan Cazalas

Problem 2: Kool-Aid

 Write a program to determine the number of cups
of Kool-Aid that must be sold in order to meet a
specified goal (see sample).

 Step 1: Problem-solving Phase

 First, let us see a sample run of the program…

Module 3: Math Functions, Strings, & Objects page 54© Dr Jonathan Cazalas

Problem 2: Kool-Aid

 Write a program to determine the number of cups
of Kool-Aid that must be sold in order to meet a
specified goal (see sample).

 Step 1: Problem-solving Phase

 Spend some time to think this one through on paper

 Once you have it solved on paper, try to code it

 You’ll likely get really close
 and maybe exactly close on some cases

 But there’s one additional thing to think of…

Module 3: Math Functions, Strings, & Objects page 55© Dr Jonathan Cazalas

Problem 2: Kool-Aid

 Write a program to determine the number of cups
of Kool-Aid that must be sold in order to meet a
specified goal (see sample).

 Step 2: Implementation Phase

 Check portal for a sample solution!

Module 3:
Math Functions, Strings,

and Objects

Python Boot Camp

