
Module 6:
Functions

Python Boot Camp

Module 6: Functions page 2© Dr Jonathan Cazalas

CS Jokes

Module 6: Functions page 3© Dr Jonathan Cazalas

Program 1: Sum Numbers

 Write a program that will sum three sets of
numbers and then display the sum of each:

 sum of integers from 1 to 10

 sum of integers from 20 to 37

 sum of integers from 35 to 49

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 6: Functions page 4© Dr Jonathan Cazalas

Program 1: Sum Numbers

 Step 1: Problem-solving Phase

 Algorithm:
 This program is really easy

 For each set of numbers:
 make a variable sum

 make a for loop and sum from the first number to the second number

 print the final sum

 So this is very easy to do

 Expected Output:

 Go ahead and code this up…

Module 6: Functions page 5© Dr Jonathan Cazalas

Program 1: Sum Numbers

 Step 2: Implementation Phase

 This works just fine…but what’s the problem?

 We are repeating the same code three times!

Module 6: Functions page 6© Dr Jonathan Cazalas

Program 1: Sum Numbers

 Observation

 Each sum is doing something very similar

 In fact, each sum is essentially doing the same thing

 The only difference is the range of numbers
 the starting and ending numbers of the sum

 So why do we *repeat* our code three times?

 Wouldn't it be nice if we could write "common" code
and then reuse it when needed?

 That would be PERFECT!

 This is the idea of functions!

Module 6: Functions page 7© Dr Jonathan Cazalas

Program 1: Sum Numbers

 Step 2: Implementation

 Here, we write a function to calculate the sum
 And then, inside main, we call/invoke the function three times

 You don't need to understand this perfectly right now

 We will spend the next week or so understanding it!

Module 6: Functions page 8© Dr Jonathan Cazalas

Introduction

 What is a function?

 A function is a collection of statements grouped together
to perform an operation.

 Guess what?
 You’ve already used something kinda similar!

 random.randint(a, b) or eval(something here)
 These are predefined methods.

 Methods are similar to functions in the way the work

 Specifically, methods are connected to objects

 …and functions are independent

 but the idea is the same

 In this chapter, we’ll learn how to define our own functions and
return the results from them

 We’ll also apply function abstraction to solve complex problems!

Module 6: Functions page 9© Dr Jonathan Cazalas

Chapter Objectives

 To define functions (§6.2).

 To invoke value-returning functions (§6.3).

 To invoke functions that does not return a value (§6.4).

 To pass arguments by values (§6.5).

 To pass arguments by values (§6.6).

 To develop reusable code that is modular, easy to read, easy to debug, and easy
to maintain (§6.7).

 To create modules for reusing functions (§§6.7-6.8).

 To determine the scope of variables (§6.9).

 To define functions with default arguments (§6.10).

 To return multiple values from a function (§6.11).

 To apply the concept of function abstraction in software development (§6.12).

 To design and implement functions using stepwise refinement (§6.13).

Module 6: Functions page 10© Dr Jonathan Cazalas

Defining Functions

 What is a function?

 A function is a collection of statements grouped together
to perform an operation.

 A function definition consists of:
 The function’s name

 The parameters of the function

 The body of the function

 Syntax:
def functionName(list of parameters)

Function body

 To understand the anatomy of a function, we start with a
simple example: find the maximum of two numbers…

Module 6: Functions page 11© Dr Jonathan Cazalas

Defining Functions

 Anatomy of Sample Function:

 Function Header:
 Begins with the def keyword, followed by the function’s name

and parameters, followed by a colon.

Module 6: Functions page 12© Dr Jonathan Cazalas

Defining Functions

 Anatomy of Sample Function:

 Formal Parameters:
 Variables shown or defined in the function header are called

formal parameters (think of these as placeholders).

Module 6: Functions page 13© Dr Jonathan Cazalas

Defining Functions

 Anatomy of Sample Function:

 Actual Parameters:
 When you call/invoke a function, you send a value to the formal

parameter placeholders.

Module 6: Functions page 14© Dr Jonathan Cazalas

Defining Functions

 Anatomy of Sample Function:

 Actual Parameters:
 When you call/invoke a function, you send a value to the formal

parameter placeholders.

 These actual (real) values are called actual parameters

 Note:
 You can use the word "parameters" or the word "arguments"

 BOTH are well-known

 The parameter list (or the argument list) refers to the function’s
type, order, and number of parameters

 Parameters are optional

 This means that some functions may have no parameters

Module 6: Functions page 15© Dr Jonathan Cazalas

Defining Functions

 Anatomy of Sample Function:

 Function Body:
 This is the collection of statements that implement the function.

Module 6: Functions page 16© Dr Jonathan Cazalas

Defining Functions

 Anatomy of Sample Function:

 Return Value
 Not all functions are used to calculate and the return a value.

 But a function can return a value using the return keyword.

Module 6: Functions page 17© Dr Jonathan Cazalas

Calling a Function

 Remember:

 A function is a collection of statements grouped together
to perform an action

 So inside the function, you define the actions
 You “code up” everything that you want the function to “do”

 Question:
 How do we "start" the function? How do we run it?

 Answer:
 We call or invoke the function.

Module 6: Functions page 18© Dr Jonathan Cazalas

Calling a Function

 Two ways to call a function, depending on whether
the function returns a value or not

1. If the function returns a value, the "call" is usually
treated as a value:
 Example:

larger_number = max(3, 4)

 Here, we "call" the function, max(3, 4)

 The maximum number, which is 4, will get returned

 We save that value (4) into the variable larger_number

 Example:
print(max(3, 4))

 Here, we directly print the result, which is 4

Module 6: Functions page 19© Dr Jonathan Cazalas

Calling a Function

 Two ways to call a function, depending on whether
the function returns a value or not

2. If the function does not return a value, the "call" to the
function is a basic statement
 Example:

 So there are no actual parameters of the print_this() function

 And it does not return a value…it simple prints inside the function

Module 6: Functions page 20© Dr Jonathan Cazalas

Calling a Function

 Program Control

 When you run a program, the control of the program is in
the regular area of your program

 We’ll refer to this as "main“

 This is called program control

 When you call a function from main, program control is
transferred to the function you called

 main is basically waiting for the function to finish
 Once the function finishes, program control returns to main

 A called function returns control to the caller
 when its return statement is executed, or

 when the last line of the function is reached

Module 6: Functions page 21© Dr Jonathan Cazalas

Program 2: Test Max

 Write a program that will call another function,
max, to determine the maximum of two numbers.
Function max should return the maximum value.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 6: Functions page 22© Dr Jonathan Cazalas

Program 2: Test Max

 Step 1: Problem-solving Phase

 Algorithm:
 In our “main” working area, we just make two integers and give

values for each
 Of course, we could ask the user for two numbers

 Or we could generate two random numbers

 These are easy things and are not the purpose of this example

 Next, we call the max function

 This means we need to write a max function!
 max function should be easy

 Just check which number is larger

 Save the larger number into a variable

 Finally, return that variable (the larger number)

Module 6: Functions page 23© Dr Jonathan Cazalas

Program 2: Test Max

 Step 2: Implementation Phase

 A possible solution:

Module 6: Functions page 24© Dr Jonathan Cazalas

The Main Function

 Main:

 We referred to the working area (the non-function area)
of your program as “main”

 Why?

 Because many (or most) languages actually define main
 This is the standard entry point into your program

 By default, Python doesn’t need this
 You just start coding on line 1

 But because using main is so common, most Python
programmers define a “main” function and then invoke
this function to start their program

Module 6: Functions page 25© Dr Jonathan Cazalas

Program 2: Test Max

 Step 2: Implementation Phase

 Another possible solution:

Module 6: Functions page 26© Dr Jonathan Cazalas

Program 2: Test Max

 Tracing Program Control

 Do yourself a HUGE favor:
 Run this program through Thonny’s debugger

 You can see precisely how the functions are called

 And what values are sent between the various functions

 Here’s a graphic, although it doesn’t come close to Thonny

Module 6: Functions page 27© Dr Jonathan Cazalas

Functions without Return Values

 The previous example (max function) was a value-
returning function
 meaning, it returned a value (the max) to the caller

 Some functions do not return anything at all

 This type of function is called a void function in
programming terminology

 The following program defines a function named
print_grade and invokes (calls) it to print the
grade based on a given score

Module 6: Functions page 28© Dr Jonathan Cazalas

Program 3: Print Grade

 Write a program that will call another function,
print_grade, to determine and print the letter
grade based on a given score. Your function should
not return anything.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 6: Functions page 29© Dr Jonathan Cazalas

Program 3: Print Grade

 Step 1: Problem-solving Phase

 Write a function that does the following:
 It takes in one parameter, a score

 It then prints the letter grade based off of that score

 Also, make a function called main:
 Ask the user to enter a score

 Print out “The grade is ”
 but you won’t print the numeric score at that point

 The goal is to have the function print the letter grade

 So remember to not print a newline

 Cause we want the letter grade on the same line

 Next you simply call the function that you made above

 Give this a shot…

Module 6: Functions page 30© Dr Jonathan Cazalas

Program 3: Print Grade

 Step 2: Implementation Phase

Module 6: Functions page 31© Dr Jonathan Cazalas

Program 4: Return Grade

 Write a program that will call another function,
get_letter_grade, to determine and then
return the letter grade based on a given score.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 6: Functions page 32© Dr Jonathan Cazalas

Program 4: Return Grade

 Step 1: Problem-solving Phase

 Firstly, DO make a new code for this problem
 copy your last code

 Make a new program

 Paste the code into the new program

 Edit it accordingly

 This program is identical to the last problem

 Only thing is you should not print inside the function

 Instead, you should return a value

 And then, in main, you should invoke your function
correctly…

Module 6: Functions page 33© Dr Jonathan Cazalas

Program 4: Return Grade

 Step 2: Implementation Phase

Module 6: Functions page 34© Dr Jonathan Cazalas

 Start here

Module 6: Functions page 35© Dr Jonathan Cazalas

None Functions

 What is a None Function?

 Technically, every Python program returns a value
 Even if you do not explicitly return something

 Meaning, whether or not you use the return statement,
something is returned

 By default, Python returns a special value, None

 Thus, functions that do not explicitly return a value are
referred to as None functions in Python

 Note:
 A return statement is not needed by a None function

 But you can include one by typing either:

 return or return None

Module 6: Functions page 36© Dr Jonathan Cazalas

Function Call Stacks

 What happens when a function is called:

 The system creates an activation record
 This activation record stores the parameters and variables,

specific to the function

 The activation record is then stored in an area of
memory known as the call stack

 Often referred to just as “the stack” (like a stack of books)

 Each time a function is called, a new activation record is
made and placed on the stack of called functions

 Note: the caller’s activation record is kept intact
 and it’s still on the stack

 It’s just that the activation record for the new/called function is placed on
top of it on the stack

Module 6: Functions page 37© Dr Jonathan Cazalas

Function Call Stacks

 The Call Stack

 What happens when a function finishes execution?

 Answer:
 Program control returns to the caller

 The function that called the one that is now finishing

 and the activation record is removed from the stack

 The Call Stack stores information in LIFO order
 Stands for Last In First Out

 So the last activation pushed into the stack will be the first
activation record removed from the stack

 Then program control returns to the previous function on the
stack

Module 6: Functions page 38© Dr Jonathan Cazalas

Positional and Keyword
Arguments/Parameters

 Power of functions comes with parameters

 We can pass values (arguments/parameters) to our
functions

 In Python, there are two kinds of arguments:
 Positional Arguments

 Keyword Arguments

 Positional Arguments:
 This simply means that the arguments sent to the function

MUST be in the exact same order as their respective
placeholders (formal parameters) in the function header

Module 6: Functions page 39© Dr Jonathan Cazalas

Positional and Keyword
Arguments/Parameters

 Power of functions comes with parameters

 Positional Arguments:
 Consider the following function that prints a line n times:

def nPrintln(message, n):

for i in range(n):

print(message)

 We could call this function with nPrintln(“Hello”, 3)

 The result:
 The word “Hello” gets passed to the variable message

 The integer 3 gets passed to the variable n

 The word “Hello” would be printed 3 times

 We could not call this function with nPrintln(3, “Hello”)

 Why?
 Because the order of the sent arguments wouldn’t match the placeholders

Module 6: Functions page 40© Dr Jonathan Cazalas

Positional and Keyword
Arguments/Parameters

 Power of functions comes with parameters

 Positional Arguments:
 Important to remember:

When using Positional Arguments, the arguments absolutely
must match the formal parameters with respect to their order,
their number, and their compatible type

 Keyword Arguments
 With Python, we can also use Keyword Arguments

 You can pass each argument in the form name = value

 Example:
 nPrintln(n = 3, message = “Hello”)

 Because the arguments use Keywords/names, you can pass them
in any order

Module 6: Functions page 41© Dr Jonathan Cazalas

Program 5: Roll Dice Game

 Write a program to simulate two users rolling a pair
of dice. You should then print the result of each
player’s dice roll, along with who won (or if a tie).

 You should use two functions:
 main()

 roll_pair_dice()

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 6: Functions page 42© Dr Jonathan Cazalas

Program 5: Roll Dice Game

 Step 1: Problem-solving Phase
 How do you code up the roll_pair_dice()

function?
 What’s the first thing we realize we need?

 Random!

 We need to randomly choose a value of the six-sided dice
 So a random number between 1 and 6

 and we need to do this two times…once for each dice

 The result is then returned to the main() function

 What goes into main()?

 You need to keep the score of both players

 You need to call the roll_pair_dice() function for each player

 You need to print the result

Module 6: Functions page 43© Dr Jonathan Cazalas

Program 5: Roll Dice Game

 Step 2: Implementation Phase

Module 6: Functions page 44© Dr Jonathan Cazalas

Passing Arguments by
Reference Values

 Remember: in Python, all data are actually objects

 a variable for an object is actually a reference variable
that points to (refers to) the actual object

 Even something as simple as “x = 2”

 An object is created.

 Then the value, 2, is stored in that object

 Then, the reference of that object is saved inside the variable x

2x

Module 6: Functions page 45© Dr Jonathan Cazalas

Passing Arguments by
Reference Values

 So here’s a question for you:

 When we call a function and pass to it arguments, what
actually gets sent to the function?

 Does the reference (address) of the object get sent?

 Or does the actual value, saved in the object, get sent?

 Answer:

 Python uses what is known as “call by object”

 In short, a reference to the actual object is sent to the
function

 So the value inside the variable, x, is sent to the function
 And that value is simple a reference to the object storing 2

2x

Module 6: Functions page 46© Dr Jonathan Cazalas

Passing Arguments by
Reference Values

 Some Python objects are immutable!

 Objects containing numbers or strings are immutable

 This is a fancy word for saying they cannot be changed!

 More generally, the contents of immutable objects
cannot be changed

 Try typing the following code and then debugging it in
Thonny while viewing both variables and the Heap
x = 2

x = 3

y = x

Module 6: Functions page 47© Dr Jonathan Cazalas

 Start here Wednesday

Module 6: Functions page 48© Dr Jonathan Cazalas

Passing Arguments by
Reference Values

 Consider the following program:

 What is the output?

Module 6: Functions page 49© Dr Jonathan Cazalas

Passing Arguments by
Reference Values

 Consider the following program:

 Output:

 So we see that the value saved in the object referenced
by variable x did not change.

 Why?
 The reference stored in x was passed and saved inside n

 Then the value was incremented by 1

 But numbers are immutable! So a new object was made, and a
reference for that object was saved in the variable n

Module 6: Functions page 50© Dr Jonathan Cazalas

Passing Arguments by
Reference Values

 Consider the following snippet of code:
x = 2

x = 3

y = x

y += 1

 How many objects do you think Python creates?

 Answer:
 If you said 3, you were close…but wrong

 There’s definitely an object for the 2, the 3, and even the 4

 But python even creates an object for the 1 that is added to 3

 So 4 total objects

Module 6: Functions page 51© Dr Jonathan Cazalas

Passing Arguments by
Reference Values

 Consider the following snippet of code:
x = 4

y = x

print(id(x))

print(id(y))

y = y + 1

print(id(y))

 Here’s a graphic explaining what happens:

Module 6: Functions page 52© Dr Jonathan Cazalas

Modularizing Code

 What is the main purpose of functions?

 Code reuse!
 We can write code once and then reuse it over and over

 A secondary purpose of functions:

 Modularize our code

 With longer programs, code can be hard to read
 Perhaps no organization…just one long block of code

 Better to break it into chunks (functions)
 This is the idea of modularizing one’s code

 Also, what’s cool is that these chunks can be offloaded into
other files and then imported into the current program…

Module 6: Functions page 53© Dr Jonathan Cazalas

Modularizing Code

 Consider the GCD program we wrote previously…

 We can write the function to compute the gcd

 And we can then save that function in its own file
 called gcd_function.py

Module 6: Functions page 54© Dr Jonathan Cazalas

Modularizing Code

 Consider the GCD program we wrote previously…

 Now we make another program
 Called test_gcd_function.py

 Here, we import the function from the other program

 Notice the syntax:
from gcd_function import gcd

 from instructs the interpreter where to find the function

 import tells the interpreter exactly which function to import

Module 6: Functions page 55© Dr Jonathan Cazalas

Modularizing Code

 Reasons why modularization is helpful:

Module 6: Functions page 56© Dr Jonathan Cazalas

Modularizing Code

 Reasons why modularization is helpful:

 It isolates the problem for computing the gcd from the
rest of the code in the program.

 Thus, the logic becomes clear and the program is easier to read

 Any errors for computing the gcd are confined to the gcd
function…this narrows the scope of debugging

 The gcd function now can be reused by other programs

 Encapsulation

 This is another popular programming word

 We’ve just encapsulated (captured and then enclosed)
the gcd code in its own function and then program

Module 6: Functions page 57© Dr Jonathan Cazalas

Scope of Variables

 Chapter 2 introduced the idea of scope

 What is scope?

 Short answer:

 The scope of a variable is the area of the program where
the variable is understood

 where the variable can be referenced and used

 We now look at scope within the context of
functions

 Variables created inside functions are called local
variables

Module 6: Functions page 58© Dr Jonathan Cazalas

Scope of Variables

 Scope within the context of functions

 Variables created inside functions are called local
variables

 Local variables can only be accessed within that function

 The scope of a local variable starts from its creation and
continues to the end of the function that contains that
variable

 Python also has global variables

 These variables are created outside all functions

 And they are accessible anywhere

Module 6: Functions page 59© Dr Jonathan Cazalas

Scope of Variables

 Examples of local and global variables

 Global variable on line 1 is accessed inside and outside
the function with no problem

 Local variable created on line 3 cannot be accessed
outside the function

Module 6: Functions page 60© Dr Jonathan Cazalas

Scope of Variables

 Examples of local and global variables

 Notice the x is declared twice
 Once as a global variable and once as a local variable

 Thus, from line 3 and onward, inside the function, the global
variable is no longer accessible

 Outside the function (line 7), the global variable is accessible

Module 6: Functions page 61© Dr Jonathan Cazalas

Scope of Variables

 Examples of local and global variables

 Notice the y is declared conditionally
 y is only declared if the condition (x > 0) is true

 Thus, if x is greater than zero, line 5 prints just fine

 But if x is nonpositive, line 5 will produce an error
 because, in fact, y was never defined

Module 6: Functions page 62© Dr Jonathan Cazalas

Scope of Variables

 Examples of local and global variables

 The local variable x is different than the global variable x

 The result:
 The increment inside the function does not change the global x

 But what if we have a global variable and would like to
modify it inside the function, can we do that?

Module 6: Functions page 63© Dr Jonathan Cazalas

Scope of Variables

 Examples of local and global variables

 Here, we did not declare a new x inside the function

 Instead, we typed “global x”

 This effectively binds (glues) the usage of x inside the
function to the global variable x

Module 6: Functions page 64© Dr Jonathan Cazalas

Scope of Variables

Check Yourself:
 What if the output of the following code?

Output:

2

3.4

2

4

Module 6: Functions page 65© Dr Jonathan Cazalas

Scope of Variables

Check Yourself:
 What if the output of the following code?

Output:

3

6

5

Module 6: Functions page 66© Dr Jonathan Cazalas

Scope of Variables

Check Yourself:
 What is wrong with the following code?

Answer:

x and y are not

defined outside the

scope of the function

Thus, lines 8 and 9

will produce errors.

Module 6: Functions page 67© Dr Jonathan Cazalas

Returning Multiple Values

 Python allows you to return multiple values

 This is cool

 And something most languages do not allow

Module 6: Functions page 68© Dr Jonathan Cazalas

Program 6: Generate
Random Characters

 Write a program that will generate 175 random
lowercase letters and print them 25 per line.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 6: Functions page 69© Dr Jonathan Cazalas

Program 6: Generate
Random Characters

 Step 1: Problem-solving Phase

 How do we print a random character?
 For sure, we need to import random

 But what else?

 We learned in Chapter 3 that every ASCII character has a
unique code between 0 and 127

 So generating a random character really amounts to
generating a random integer between 0 and 127!

 Then we just use the chr function to obtain the integer
value from the randomly generated int

 chr(randint(0, 127))

Module 6: Functions page 70© Dr Jonathan Cazalas

Program 6: Generate
Random Characters

 Step 1: Problem-solving Phase

 What about random lowercase letters?

 One solution is to remember the ASCII values of a and z:
 Lowercase ‘a’ is 97

 Lowercase ‘z’ is 122

 So now you just create a random int value between those values

 chr(randint(97, 122))

 But no one wants to remember that!

 Thankfully, we can use Python’s built-in ord function

 We saw this in Chapter 3 as well

 The ord function returns the ASCII value of a character

 print(ord(‘a’)) # 97 is printed

Module 6: Functions page 71© Dr Jonathan Cazalas

Program 6: Generate
Random Characters

 Step 1: Problem-solving Phase

 What about random lowercase letters?

 So what we need is a random integer between:
 ord(‘a’) and ord(‘z’)

 Thus:
 randint(ord(‘a’), ord(‘z’))

 And now we get the character value of the
 chr(randint(ord(‘a’), ord(‘z’)))

 And finally, a random character between any two
characters, ch1 and ch2 (ch1 must be less than ch2) can
be made as follows:

 chr(randint(ord(ch1), ord(ch2)))

Module 6: Functions page 72© Dr Jonathan Cazalas

Program 6: Generate
Random Characters

 Step 2: Implementation Phase

 This gives as another chance to practice modularization

 Let’s remove the functionality of generating random
characters from the program that actually prints them

 So we first make a program containing only functions

 Then we make our program to print the characters
 In this program, we import the functions

Module 6: Functions page 73© Dr Jonathan Cazalas

Program 6: Generate
Random Characters

 Step 2: Implementation Phase

Notice that we first make a
generic function, which is then
called by the other functions.

The first function generates a
random character between
“ch1” and “ch2” (inclusive).

Next, for example, the second
function shown calls the first
function by sending to it the
characters ‘a’ and ‘z’.

Discuss in groups what

is going on here.

Module 6: Functions page 74© Dr Jonathan Cazalas

Program 6: Generate
Random Characters

 Step 2: Implementation Phase

Module 6: Functions page 75© Dr Jonathan Cazalas

Function Abstraction

 Main idea for developing software!

 To develop quality software, programmers must fully
understand and be comfortable with the idea of function
abstraction

 What is function abstraction?

 We separate the implementation of a function from the
actual use of the function

 The client/customer can use a function without knowing
how to actually code it

 The details of the function are hidden from the client

Module 6: Functions page 76© Dr Jonathan Cazalas

Function Abstraction

 Information Hiding (Encapsulation)

 Again, the details of the implementation are
encapsulated inside the function

 And they are hidden from the client

 This is called Information Hiding or encapsulation

 The client has access to the function header
 They can call the function with certain parameters

 And they hope to get a return value from the function

 But what is inside the function is hidden from them

 In fact, they don’t care…they just want it to work!

Module 6: Functions page 77© Dr Jonathan Cazalas

Function Abstraction

 Information Hiding (Encapsulation)

 So think of the function as a “BLACK BOX” that contains
the implementation…but it is hidden

Module 6: Functions page 78© Dr Jonathan Cazalas

Stepwise Refinement

 Function Abstraction helps makes programs easier

 because the implementation of a specific idea is
removed from the main body of the program

 So the program is easier to read and understand

 This idea is part of Stepwise Refinement

 What is stepwise refinement?

 The idea of solving a larger problem/program in smaller
steps

 Certainly, solving something small is easier than solving
something larger

Module 6: Functions page 79© Dr Jonathan Cazalas

Program 7: Print Calendar

 Write a program that prompts the user to enter the
calendar year and month and then displays the
exact calendar for that input.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 6: Functions page 80© Dr Jonathan Cazalas

Program 7: Print Calendar

 Step 1: Problem-solving Phase

 Expected output:

Module 6: Functions page 81© Dr Jonathan Cazalas

Program 7: Print Calendar

 Step 1: Problem-solving Phase

 Requirements:
 First requirement: do NOT START CODING!!!

 New programmers want to start code right away

 And they also care about the DETAILS of the program

 Yes, details are important…but not at the beginning

 The main requirement is to truly understand what the
programming is asking of you

 So for this problem, let us use function abstraction to
isolate the details from the actual program design

Module 6: Functions page 82© Dr Jonathan Cazalas

Program 7: Print Calendar

 Step 1: Problem-solving Phase

 Problem Components:
 We can start by breaking the program into two main

components:
 Get input from user

 Print the calendar

 Clearly, getting input from the user is easy and can be left for
later discussion

 The main work is in printing the calendar

Module 6: Functions page 83© Dr Jonathan Cazalas

Program 7: Print Calendar

 Step 1: Problem-solving Phase

 Problem Components:
 And printing the calendar can also be broken down into two

components:
 Print the month title

 Print the month body

 Printing the month title is easy
 It consists of three lines, month and year, a long dashed line, and then the

names of the week

 The only “calculation” here is determining the name of the month

Module 6: Functions page 84© Dr Jonathan Cazalas

Program 7: Print Calendar

 Step 1: Problem-solving Phase

 Problem Components:
 Printing the month body will take some thought

 There are two main things we must compute
 Starting day of month

 # of days in month

 So how can you get the starting day of the month?
 This problem on its own can be complicated and requires its own thought

and strategy

Module 6: Functions page 85© Dr Jonathan Cazalas

Program 7: Print Calendar

 Step 1: Problem-solving Phase

 So how can you get the starting day of the month?
 Assume we know that the start day for January 1, 1800 was a

Wednesday
START_DAY_FOR_JAN_1_1800 = 3

 You could compute the total number of days between January
1, 1800 and the first date of the calendar month

 The start day of the calendar month is:
(totalNumberOfDays + START_DAY_FOR_JAN_1_1800) % 7

 Summary: the problem of getting the starting day can be further
broken down into the problem of getting the total number of
days since January 1, 1800

Module 6: Functions page 86© Dr Jonathan Cazalas

Program 7: Print Calendar

 Step 1: Problem-solving Phase

 Okay. So how can we get the total number of days?
 Simple, each year is 365 days.

 And then for the last year, you must count the number of days
before that specific month

 This means you need to save the number of days in each month
 And you can write a separate function for this

 But wait! There is something else to consider!

 LEAP YEAR!

 So you must also test for a leap year

Module 6: Functions page 87© Dr Jonathan Cazalas

Program 7: Print Calendar

 Step 1: Problem-solving Phase

 So you can see that many components are needed to
solve this problem

 You cannot just start coding immediately

 Instead, you must identify, step-by-step, or component-
by-component, what is needed for your program

 What we just did was called the “Top-Down Approach”

 The design diagram is shown on the next pages

Module 6: Functions page 88© Dr Jonathan Cazalas

Program 7: Print Calendar

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

Module 6: Functions page 89© Dr Jonathan Cazalas

Program 7: Print Calendar

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

Module 6: Functions page 90© Dr Jonathan Cazalas

Program 7: Print Calendar

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

Module 6: Functions page 91© Dr Jonathan Cazalas

Program 7: Print Calendar

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

Module 6: Functions page 92© Dr Jonathan Cazalas

Program 7: Print Calendar

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

Module 6: Functions page 93© Dr Jonathan Cazalas

Program 7: Print Calendar

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

Module 6: Functions page 94© Dr Jonathan Cazalas

Program 7: Print Calendar

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

Module 6: Functions page 95© Dr Jonathan Cazalas

Program 7: Print Calendar

 Step 1: Problem-solving Phase

 Top-down approach is to implement one function in the
structure chart at a time from the top to the bottom.

 Stubs can be used for the functions waiting to be implemented.

 A stub is a simple but incomplete version of a function.

 The use of stubs enables you to test invoking the function from
a caller.

 Implement the main function first and then use a stub for the
print_month function and so on

 This basically sets up a “skeleton version” of our code as shown
on the print_calendar_stubs.py program on portal

Module 6: Functions page 96© Dr Jonathan Cazalas

Program 7: Print Calendar

 Step 2: Implementation Phase

 Clearly this program is way too long to fit here on the
slides

 The stub/skeleton program is available on Portal

 Also, the final working version of the program is
available for you on Portal

Module 6: Functions page 97© Dr Jonathan Cazalas

Benefits of Stepwise Refinement

 Some programs can be very long

 This last program was only 100 lines, but it had several
logically independent components

 Stepwise refinement breaks the larger problem
down into smaller, more manageable subproblems

 Each subproblem can be implemented using a
function

 This approach makes the program easier to:

 write, reuse, debug, test, modify, and maintain

Module 6: Functions page 98© Dr Jonathan Cazalas

Benefits of Stepwise Refinement

 Reusing functions:

 Stepwise refinement encourages code reuse

 The is_leap_year function is defined once

 However, it is used twice:
 Inside the get_total_number_of_days

 Inside the get_number_of_day_in_month

Module 6: Functions page 99© Dr Jonathan Cazalas

Benefits of Stepwise Refinement

 Easier developing, debugging, and testing

 Each subproblem is developed in a function

 This means each subproblem can be developed,
debugged, and tested independently of other
components of the problem

 This isolates errors

 Whenever you develop large programs, use this
stepwise refinement approach

 It may seem to take longer at first

 But it saves time and makes debugging much easier!

Module 6:
Functions

Python Boot Camp

